C 21080

6	P	2	o	A	c		3)
۹	1	а	2	c	3	-	0

Reg. No....

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2017

(CUCBCSS-UG)

Physics/Applied Physics

PHY 6B 12/APY 6B 13—NUCLEAR PHYSICS, PARTICLE PHYSICS AND ASTROPHYSICS
Time: Three Hours

Maximum: 80 Marks

The symbols used in this question paper have their usual meanings.

Section A (Answer in a word or a phrase)

Answer all questions, each question carries 1 mark.

- 1. The binding energy per nucleon versus mass number curve peaks at which element?
- 2. The number of available nuclear states in a p shell is ______.
- 3. A Tokamak is used for confinement of plasma.
- 4. Does neutrino possesses a mass?
- 5. What is the ratio of brightness of two stars whose magnitudes differ by unity, according to Pogson's magnitude scale?

Questions 6 to 10: Write True or False

- 6. The hydrogen isotope tritium is radioactive.
- 7. Radioactive decay obeys the law of chance.
- 8. A scintillation counter is comparatively slow in response.
- 9. A particle and its antiparticle possess the same spin.
- 10. The total amount of energy radiated from a star from its surface per second is called brightness.

 $(10 \times 1 = 10 \text{ marks})$

Section B (Answer in two or three sentences)

Answer all questions, each question carries 2 marks.

- 11. What are the magic numbers in the nucleus? Why are they called so?
- 12. Comment on the saturation property of nuclear forces.
- 13. List the different radioactive series. Mention the parent element in each case.
- 14. What do you mean by a breeder reactor?
- 15. What are baryons?

Turn over

- 16. Give the quark composition of a proton and a neutron.
- 17. What are the quantities on which the brightness of a star depends on? What do you mean by the term absolute magnitude of a star?

 $(7 \times 2 = 14 \text{ marks})$

Section C

Answer in a paragraph of about half a page to one page. Answer any five questions, each question carries 4 marks.

- 18. Discuss briefly the meson theory of nuclear forces.
- 19. Discuss the principle of radiocarbon dating. Mention its application.
- 20. Write short note on the proton-proton cycle in sun.
- 21. Draw the schematic of an ionization chamber and indicate the parts.
- 22. What are the fundamental interactions in nature? Mention the gauge particles involved in each case.
- 23. Explain the working principle of electron synchrotron.
- 24. Explain the term stellar parallax.

 $(5 \times 4 = 20 \text{ marks})$

Section D

(Problems-write all relevant formulas, all important steps carry separate marks).

Answer any four questions; each question carries 4 marks

- 25. The binding energy per nucleon for two isotopes of carbon ¹²C and ¹³C are 7.68 MeV and 7.47 MeV respectively. What is the energy required to remove a neutron from the carbon nucleus?
- 26. Determine the activity of 1 mg. of a radioactive substance having atomic mass 222 amu. Given, the half life is 3.8 days.
- 27. Estimate the energy released by fission of 1-kg of ²³⁵U. Given, the energy released per fission is 200 MeV.
- 28. Draw the count rate versus applied voltage of a GM tube and indicate the different regions.
- 29. Discuss briefly the origin of cosmic rays.
- 30. Check whether the following reaction is allowed or forbidden:-

$$\pi^+ + n \to \pi^0 + \mathbf{K}^+.$$

31. Briefly explain the equatorial and ecliptic co-ordinate systems.

 $(4 \times 4 = 16 \text{ marks})$

Section E (Essays-Answer in about two pages)

Answer any two questions, each question carries 10 marks.

- 32. Discuss the nuclear properties spin and magnetic moment. Give the essential features of the shell
- 33. Explain the beta and gamma decay processes.
- 34. List the elementary particles. Discuss the elementary particle quantum numbers baryon number, lepton number, strangeness, isospin and hyper charge and their conservation laws in particle
- 35. Discuss the working principle of a Cockcroft-Walton proton accelerator.

 $(2 \times 10 = 20 \text{ marks})$