0	0	1	1	72
U	4	1	v	14

(Pages: 4)

Name.....

Reg. No....

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2017

(CUCBCSS-UG)

Mathematics

MAT 6B 11-NUMERICAL METHODS

Time : Three Hours

Maximum: 120 Marks

Section A

Answer all the twelve questions. Each question carries 1 mark.

- 1. Set up a Newton's iteration for computing $\sqrt{2}$.
- 2. Construct the difference table of $f(x) = x^3 3x^2 + 5x + 7$ for the values x = 0, 2, 4, 6, 8.
- 3. Give the Gauss's forward interpolation formula.
- 4. What do you mean by central differences?
- 5. Evaluate $\Delta^{n}\left(e^{x}\right)$, interval of differencing being unity.
- 6. Write the relation between divided differences and forward differences.
- 7. Given a set of *n*-values of (x, y), what is the formula for computing $\left[\frac{d^2y}{dx^2}\right]_{x_0}$
- 8. State general formula for numerical integration.
- 9. State Adams-Bashforth formula.
- 10. What is the order of the error in Simpson's 1/3 rule.
- 11. In solving $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$, write down Taylor's series for $y(x_1)$.
- 12. Write Runge-Kutta formula of fourth order to solve $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$.

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer any ten out of fourteen questions.

Each question carries 4 marks.

13. Find a real root of the equation $x^3 - 2x - 5 = 0$ using secant method.

14. Prove that (i) $\Delta = E - I$; (ii) $E = e^{hD}$ where E is the shift operator and D is the differential operator.

15. Find the missing term in the following table:

 x
 ...
 0
 1
 2
 3
 4

 y
 ...
 1
 3
 9
 81

16. Find the divided differences of $f(x) = x^2 + x + 2$ for the arguments 1, 3, 6, 11.

17. Prove that n^{th} divided differences of a polynomial of n^{th} degree are constants.

18. Using Lagrange's interpolation formula, find the form of the function y(x) from the following table:

19. The speed, v meters per second, of a car, t seconds after it starts, is shown in the following table:

t	0	12	24	36	48 9	60	72	84	96	108	120
	0	3.60	10.08	18.90	21.60	18.54	10.26	5.40	4.50	5.40	9.00

Find the distance travelled by the car in 2-minutes.

20. Derive Simpson's (3/8)-rule $\int_{x_0}^{x_3} y dx = \frac{3}{8}h (y_0 + 3y_1 + 3y_2 + y_3)$.

21. Explain Simpson's 1/3-rule.

22. Decompose the matrix $\begin{bmatrix} 2 & -3 & 10 \\ -1 & 4 & 2 \\ 5 & 2 & 1 \end{bmatrix}$ in the form LU.

23. From the following table, estimate the number of men getting wages between 100 and 150:

Wages in Rupees	0-100	100-200	200-300	300-400
No. of Men	9	30	35	42

- 24. Solve the system of equations 28x + 4y z = 32; x + 3y + 10z = 24; 2x + 17y + 4z = 35 by Gauss-Seidel iteration method .
- 25. Using Picard's method obtain a solution upto the fifth approximation to the equation $\frac{dy}{dx} = y + x$, such that y(0) = 1.
- 26. Using Adams-Moulton method , find y(1.4) given

$$\frac{dy}{dx} = x^2 (1+y)$$
, $y(1) = 1$, $y(1.1) = 1.233$, $y(1.2) = 1.548$ and $y(1.3) = 1.979$.

 $(10 \times 4 = 40 \text{ marks})$

Section C

Answer any six out of nine questions. Each question carries 7 marks.

- 27. Using Newton's iterative method, find the real root of $x \log_{10} x = 1.2$ correct to five decimal places.
- 28. Using the method of separation of symbols, show that

$$\Delta^n u_{x-n} = u_x - n u_{x-1} + \frac{n \left(n - 1 \right)}{2} u_{x-2} + \dots + \left(-1 \right)^n u_{x-n}.$$

- 29. Find the smallest root of the equation $f(x) = x^3 6x^2 + 11x 6 = 0$.
- 30. From the following table, find the value of $\sin 38^{\circ}$:

15	20	25	30	05	
0.2588190	0.3420201		- 80		40
					0.6407076
	4.7	20	0.2588100	0.2588190 0.3420201 0.420201	0.2588190 0.3420201 0.402045

- 31. Given $\sum_{1}^{10} f(x) = 500426$, $\sum_{4}^{10} f(x) = 329240$, $\sum_{7}^{10} f(x) = 175212$ and f(10) = 40365 find f(1).
- 32. Find the first and second derivatives of the function tabulated below at the point x = 1.5:

x	1.5	2.0	2.5	3.0	3.5	4.0
f(x)	3.375	7.0	13.625	24.0	38.875	59.0

Turn over

- 33. Apply Lagrange's formula inversely to obtain a root of the equation f(x) = 0, given that f(30) = -30, f(34) = -13, f(38) = 3 and f(42) = 18.
- 34. Apply Runge-Kutta method, to find an approximate value of y when x = 0.2 given that $\frac{dy}{dx} = x + y, y(0) = 1.$
- 35. Find the inverse of the matrix $\begin{bmatrix} 4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2 \end{bmatrix}$ using Gauss Elimination Method.

 $(6 \times 7 = 42 \text{ marks})$

Section D

Answer any two out of three questions.

Each question carries 13 marks.

- 36. Evaluate $\int_0^6 \frac{dx}{1+x^2}$ using
 - (a) Trapezoidal rule taking h = 1.
 - (b) Simpson's $\frac{1}{3}$ rule taking h = 1.
 - (c) Simpson's $\frac{3}{8}$ rule taking h = 1.
- 37. Solve the system of equations:

$$x_1 + 2x_2 + x_3 - x_4 = -2$$
; $x_1 + x_2 + 3x_3 - 2x_4 = -6$; $2x_1 + 3x_2 - x_3 + 2x_4 = 7$; $x_1 + x_2 + x_3 + x_4 = 2$ by Gauss Jordan method.

- 38. (a) Apply Milne's method, to find a solution of the differential equation $\frac{dy}{dx} = x y^2$ in the range $0 \le x \le 1$ for the boundary condition y = 0 at x = 0.
 - (b) Determine the largest eigen value and corresponding eigen vector of the matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.

(0 10 00 1