C 40 10	0 5 27	B 4 4	
50 500.50	<i>3</i> 28 32	n was	8 8
ed transm	21(12 ST 20	v a

(Pages: 4)

Name.....

Reg. No.....

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2017

(CUCBCSS-UG)

Mathematics

MAT 6B 09 REAL ANALYSIS

Time: Three Hours

Maximum: 120 Marks

Section A

Answer all questions.

Each question carries 1 mark.

- 1. State boundedness theorem.
- 2. Define absolute Minimum of a function.
- 3. State the preservation of interval theorem.
- Give an example of a continuous function on (0,∞) which has neither absolute maximum nor absolute minimum.
- 5. Give an example of a continuous function on $A \subseteq R$, which is not uniformly continuous on A.
- 6. Find ||p|| if $p = \{0, 0.3, 0.6, 1, 1.5, 2\}$ is a partition of the set [0, 2].
- 7. Give an example of the 2nd kind improper integral.
- 8. The Radius of convergence of the power series $\sum \frac{x^n}{n!}$ is ______.
- 9. Define uniform convergence of a series of functions.

10.
$$\lim_{n\to\infty}\left(\frac{\sin(nx+n)}{n}\right)=---$$

- 11. What do you mean by uniform norm of a bounded function for $A \subseteq R$.
- 12. Find $\sqrt{\frac{5}{2}}$.

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer any ten questions. Each question carries 4 marks.

13. Let I = [a, b], Let $f: I \to R$ be continuous. If $K \in R$ is any number satisfying

 $\inf f(I) \leq K \leq \sup f(I),$

then prove that there exist a number $C \in I$ such that f(c) = k.

Turn over

- (b) If f is a Lipschitz function on $A \subseteq R$, then prove that f is uniformly continuous on A. 14. (a) Define Lipschitz function.
- 15. Show that the function f defined by

f (x) =
$$\begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{when } x \text{ is irrational} \end{cases}$$
 rational

has no Riemann Integral over [0,1].

16. Evaluate
$$\int_{0}^{\infty} x^{6} e^{-2x} dx$$
.

- 17. State the substitution theorem of Riemann Integration. Use it to evaluate $\int_1^4 \frac{\sin \sqrt{t}}{\sqrt{t}} dt$.
- 18. State continuous extension theorem. Use it to show that $f(x) = \sin\left(\frac{1}{x}\right)$ is not uniformly continuous
- on (0, b], b > 0. 19. Determine the uniform convergence of $\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$.
- 20. State and prove the Weierstrus M-Test for a series of functions. 21. If F and G are differentiable on [a, b] and let f = F' and g = G' belongs to R [a, b] then P.T.
- 22. State Lebesgue's Integrability Criterion for Riemann Integrability. Use it to show that every step function on [a, b] is Riemann Integrable.
- 23. Test the convergence of $\int_{1}^{\infty} \frac{\ln x}{x^2} dx$.

24. Evaluate
$$\int_{2}^{\infty} \frac{(x+3)dx}{(x-1)(x^2+1)}$$

25. Prove that
$$\sqrt{n+1} = n\sqrt{n}$$
.

25. Prove that
$$\sqrt{n} = \int_{0}^{\infty} e^{-y^2} y^{2n-1} dy$$
.

 $(10 \times 4 = 40 \text{ m})$

Section C

Answer any six questions.

Each question carries 7 marks.

- 27. State and prove Intermediate value theorem.
- 28. If $f \in \mathbb{R}[a, b]$, then prove that f is bounded on [a, b].
- 29. If $f:[a,b] \to \mathbb{R}$ is monotone on [a,b], P. T. $f \in \mathbb{R}[a,b]$.
- 30. If $f: A \to R$ is uniformly continuous on $A \subseteq R$ and if (x_n) is a Cauchy sequence in A, then prove that $f(x_n)$ is a Cauchy sequence in R.
- 31. Discuss the convergence of the sequence $(f_n(x))$, where $f_n(x) = \frac{x^n}{x^n + 1}$, $x \in [0, 2]$.
- 32. State the necessary and sufficient condition for sequence (f_n) to fail to converge uniformly on A_0 CR to f. Use it to test the uniform convergence of $(f_n(x))$, where $f_n(x) = \frac{x}{n}$, x = R.
- 33. If (f_n) and (g_n) are uniformly convergent sequences on $A \subseteq \mathbb{R}$, is it imply that $(f_n)(g_n)$ is uniformly convergent on A? Justify by an example.
- 34. State and prove the product theorem on Riemann Integration.
- 35. Prove that $\beta(m,n) = \frac{\sqrt{m}.\sqrt{n}}{\sqrt{m+n}}, \forall m,n > 0.$

 $(6 \times 7 = 42 \text{ marks})$

Section D

Answer any two questions.

Each question carries 13 marks.

- 36. (a) State and prove the Cauchy criterion for uniform convergence of a sequence of functions.
 - (b) Discuss the convergence of $f_n(x) = x^4$, $x \in [0, 1]$.
- 37. (a) State and prove uniform continuity theorem.
 - (b) Test the uniform continuity of $f(x) = \sqrt{x}$, $x \in [0, 2]$.