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Abstract: A simple graph G is said to be T1 if for any two distinct vertices u and v of G,
one of the following conditions hold:

1. At least one of u and v is isolated

2. There exist two edges e1 and e2 of G such that e1 is incident with u but not with v

and e2 is incident with v but not with u.

In this paper we discuss T1 graphs and some examples of it. This paper also deals with

the sufficient conditions for join of two graphs, middle graph of a graph and corona of two

graphs to be T1. It proved that line graph of any T1 graph is T1. Moreover, the relations

between T1 graphs with its incidence matrix and its adjacency matrix is discussed.
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1. Introduction

All the graphs considered here are finite and simple. In this paper we denote
the set of vertices of G by V (G), the set of edges of G by E(G), the maximum
degree of G by ∆(G) and the minimum degree of G by δ(G).

The degree [5] of a vertex v in graph G, denoted by deg(v), is the number of
edges incident with v. A pendant vertex [7] in a graph G is a vertex of degree
one. A vertex v is isolated [5] if deg(v) = 0.
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By an empty graph [2] we mean a graph with no edges. A simple graph is
said to be complete [1] if every pair of distinct vertices of G are adjacent in G.
A complete graph on n vertices is denoted by Kn. A graph is bipartite [2] if its
vertex set can be partitioned into two subsets, X and Y so that every edge has
one end in X and other end in Y ; such a partition (X,Y ) is called a bipartition

of the bipartite graph. A simple bipartite graph is complete if each vertex of
X is adjacent to all vertices of Y . A complete bipartite graph with |X| = m

and |Y | = n is denoted by Km,n. Given two graphs, G and H, we say H is an
induced subgraph[3] of G if V (H) ⊆ V (G), and two vertices of H are adjacent if
and only if they are adjacent in G. In this case if V (H) = S, we write H = G[S]
or H = 〈S〉. The union [9] of two graphs G1 and G2 denoted by G1 ∪ G2 is
the graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). The
line graph [9] L(G) of a graph G, is the graph whose vertex set is E(G) and
edge set is {ef : e, f ∈ E(G) and e, f have a vertex in common}. The join

[4] of two graphs G1 and G2 denoted by G1 ∨ G2 is the graph with vertex set
V (G1)∪V (G2) and edge set E(G1)∪E(G2)∪{uv : u ∈ V (G1) and v ∈ V (G2)}.
The corona [4] of two graphs G1 and G2 is the graph G = G1 ◦G2 formed from
one copy of G1 and |V (G1)| copies of G2, where ith vertex of G1 is adjacent
to every vertex in ith copy of G2. The ring sum [8] of two graphs G1 and G2,
denoted by G1 ⊕ G2, is the graph consisting of the vertex set V (G1) ∪ V (G2)
and of edges that are either in G1 or G2, but not in both. The middle graph

[6] of G = (V (G), E(G)) is the graph M(G) = (V (G) ∪ E(G), E′(G)), where
uv ∈ E′ if and only if either u is a vertex of G and v is an edge containing u,
or u and v are edges having a vertex in common.

2. T1 Graphs

In this paper we introduce the concept of T1 graphs.

Definition 1. A graph G is said to be a T1 graph if for any two distinct
vertices u and v of G, one of the following conditions hold:

1. At least one of u and v is isolated

2. There exist two edges e1 and e2 of G such that e1 is incident with u but
not with v and e2 is incident with v but not with u.

The terminology ‘T1 graph’ is used for this new concept, because if G is a
T1 graph, then the topology generated by the collection of all two point sets
consisting of the end vertices of edges of G and singleton sets consisting of
isolated vertices of G is a T1 topology on V (G).
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Figure 1: (a) An example of a T1 graph. (b) An example of a non- T1

graph.

Example 2.

The graph G in Figure 1, is T1 where as the graph H in Figure 1, is not T1.
The failure of the graph H to be T1 is that it contains a pendant edge.

Theorem 3. Let G be a graph with δ(G) ≥ 2, then G is T1.

Proof. Let u and v be two distinct vertices of G. Since δ(G) ≥ 2, both u

and v are adjacent to at least two vertices of G. Let w be a vertex adjacent to
u in G distinct from v. Then e = uw is an edge of G incident with u but not
with v. Similarly we can prove that there exists an edge f incident with v but
not with u.

From the definition of T1 graphs we have,

1. if G is a T1 graph with no isolated vertices, then any supergraph of G is
T1.

2. n-regular graphs are T1 if n 6= 1

3. for n ≥ 3, the cycle Cn is T1.

4. the complete graph Kn is T1 if n 6= 2

5. the complete bipartite graph Kmn is T1 if m ≥ 2 and n ≥ 2

Let u be a pendant vertex of a graph G with pendant edge uv. In this case
there exist no edge containing u but not v in G. Hence G is not T1. Therefore,
we have the following proposition

Proposition 4. If G is a graph with δ(G) = 1, then G is not T1.



584 Seena V, R. Pilakkat

Proposition 5. The union of T1 graphs is T1.

Let G be a graph with no pendant edges. Then we can write the vertex set
of G as V (G) = K ∪ H, where K contains all the isolated vertices of G and
H contains all non-isolated vertices of G. Then the subgraph of G induced by
K is an empty graph which is T1. The subgraph of G induced by H is also T1

since it is a graph with minimum degree ≥ 2. Therefore, G being the union of
two T1 graphs is T1. Hence we have the following proposition.

Proposition 6. If G is a graph with no pendant edges, then G is T1.

Theorem 7. Let G1 and G2 be two isomorphic graphs. If G1 is T1, then

G2 is also T1.

Proof. Given that G1 and G2 are isomorphic. Therefore, there exist bijec-
tions f : V1 → V2 and g : E1 → E2, such that g(uv) = f(u)f(v) for every
uv ∈ E1. Let u and v be two distinct vertices of G2. Since f is a bijection there
exist two distinct vertices x and y of G1 such that f(x) = u and f(y) = v. Since
G1 is T1, there exists an edge e1 of G which is incident with x but not with y.
Let p 6= y be a vertex of G1 such that e = xp. Then g(e) = f(x)f(p) = uf(p).
Since f is a bijection g(e) is an edge of G2 incident with u but not incident
with v. Similarly we can prove there exists an edge of G2 incident with v but
not incident with u. Therefore, G2 is T1. Hence the theorem.

3. Incidence Matrix and Adjacency Matrix

Theorem 8. Let G be a graph with vertex set V (G) = {v1, v2, . . . vn},
and edge set E(G) = {e1, e2, . . . em}. Let M = (mij) be its incidence matrix.

Then G is a T1 graph if and only if there does not exist an index i such that∑n
j=1mij = 1.

Proof. By Proposition 4, 6, a graph G is T1 if and only if it has no pendant
edges. That is, if and only if degree of each vertex of G is different from 1.
That is, if and only if the sum of elements of each row of its incidence matrix
6= 1

By the definition of the adjacency matrix A = (aij) of a graph G with vertex
set V (G) = {v1, v2, . . . vn},

∑n
j=1 aij will be the degree of the vertex vi. We

know that a graph G is T1 if and only if δ(G) 6= 1. We summarise this result
as follows:
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Figure 2: Graph G and its line graph L(G).

Theorem 9. Let G be a graph with vertex set V (G) = {v1, v2, . . . vn},
and edge set E(G) = {e1, e2, . . . em}. Let A = (aij) be its adjacency matrix.

Then G is a T1 graph if and only if there does not exist an index i such that∑n
j=1 aij = 1.

4. Line Graph and Complement of a Graph

Theorem 10. The line graph L(G) of a T1 graph G is T1.

Proof. Let e1 and e2 be two distinct vertices of L(G). Then e1 and e2 are
two distinct edges of G. Since e1 6= e2, there exist two distinct vertices x and
y such that x is incident with e1 but not incident with e2 and y is incident
with e2 but not with e1. Let e1 = ux and e2 = vy, where u and v need not
be distinct. Clearly x 6= v and u 6= y. Since G is T1, there exists an edge f1
incident with x but not with u. Similarly, there exist an edge f2 incident with
u but not with x. Then e = e1f2 is an edge of L(G) incident with e1 but not
with e2. Similarly we can prove that there exists an edge f incident with e2
but not with e1. Therefore, the line graph L(G) of G is T1.

Figure 2, shows that line graph of a non-T1 graph can be T1. Figure 3,
shows that the complement of a T1 graph in general is not T1.

Let G be a graph with n vertices. If ∆(G) ≤ n− 3, then δ(G) ≥ 2. Hence
we have:

Proposition 11. If G is a graph with ∆(G) ≤ n− 3, where n is the order

of G, then G is T1.
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Figure 3: Graph G and its complement G.
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Figure 4: The ring sum of two T1 graphs.
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Figure 5: The ring sum of two non-T1 graphs.

5. Ring Sum and Join

In this section we deal with ring sum and join of two graphs.

Proposition 12. The ring sum of two graphs with disjoint vertex set is

T1 if and only if both of them are T1.

Example 13.

From Figure 4, it follows that, the ring sum of two T1 graphs need not be
T1 and Figure 5, shows that ring sum of two non-T1 graphs may be T1.

Example 14.

Next, we consider the join of two graphs. Figure 6, shows that if |V (G1)| � 2
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Figure 6: Join of two graphs.

and |V (G2)| � 2, then G1 ∨G2 is not T1.

Theorem 15. Let G1 and G2 be two graphs with |V (G1)| ≥ 2 and

|V (G2)| ≥ 2, then G1 ∨G2 is T1.

Proof. Let u be any vertex of G1 ∨ G2. Without loss of generality we can
assume that u ∈ V (G1). By the definition of join of graphs, u is adjacent to all
the vertices of G2. Since |V (G2)| ≥ 2, deg(u) ≥ 2. Since u is arbitrary we get
δ(G) ≥ 2. Therefore, by Theorem 3, G1 ∨G2 is T1.

6. Corona and Middle Graph

From the definition of corona of two graphs we have:

Theorem 16. Suppose G1 is any graph and G2 is a T1 graph with no

isolated vertices, then G1 ◦G2 is T1 . In particular, the corona of two T1 graphs

with no isolated vertices is T1.

Proof. Since G2 is a T1 graph with no isolated vertices, |V (G2)| ≥ 3 and
δ(G2) ≥ 2. Therefore, δ(G1 ◦G2) ≥ 2. Hence by Theorem 3, G1 ◦G2 is T1.

Proposition 17. If G1 is any graph and G2 is a T1 graph with an isolated

vertex, then G1 ◦G2 can never be T1.

Proof. Every isolated vertex of G2 determines |V (G1)| pendant edges in
G1 ◦G2. Therefore, G1 ◦G2 cannot be T1.

Remark 18. Figure 7 shows that Theorem 16 need not be true, if we
interchange the roles of G1 and G2. Also it shows that corona of two T1 graphs
need not be T1.
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Figure 7: The corona of two graphs.

Another graph that we can derive from the given graph is the middle graph,
which also behaves nicely with the T1 property provided G is a graph with no
pendant edges.

Lemma 19. Let G be a graph with δ(G) ≥ 2. Then the middle graph

M(G) of G is T1.

Proof. Let u and v be two distinct vertices of M(G). As the vertex set of
M(G) is V (G) ∪E(G), the following three cases arise.

Case 1. u, v ∈ V (G)

Since δ(G) ≥ 2, there exist a vertex w distinct from v such that u is adjacent
to w. Let e = uw, then ue is an edge of L(G) incident with u but not with v.
Similarly we can find an edge f of L(G) incident with v but not with u.

Case 2. u, v ∈ E(G)
Since u 6= v, there exist two distinct vertices x and y such that u is incident
with x and v is incident with y. Then the edges ux and vy serve the purpose.

Case 3. Suppose u ∈ V (G) and v(= e say) ∈ E(G).

Since δ(G) ≥ 2, there exists an edge f distinct from e incident with u. Let
w 6= u be an end point of e. Then the edge uf of M(G) is incident with u but
not with v and the edge ew is incident with u but not with v.

Hence the lemma

Theorem 20. Let G be a graph with no pendant edges, then the middle

graph M(G) of G is T1.
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Proof. We have V (G) = K∪H, whereK contains all the isolated vertices of
G and H contains all the non isolated vertices of G. We know that the middle
graph of an empty graph is empty. Therefore, M(G) = M(K) ∪M(H). Since
G is a graph with no pendant edges, δ(H) ≥ 2. Therefore, by Lemma 19 M(H)
is T1. Since M(K) is an empty graph it is also T1. Therefore, M(G) being the
union of two T1 graphs is T1. Hence the theorem.

7. Conclusions

In this paper T1 graphs have been discussed with examples. Sufficient conditions
for join of two graphs, middle graph of a graph, corona of two graphs to be T1

have also been discussed. It was observed that the line graph of a T1 graph
is T1. Furthermore, the relations of T1 graph with its incidence matrix and
adjacency matrix is discussed.
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