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Abstract: A simple graph G is said to be Hausdroff if for any two distinct vertices u and v

of G, one of the following conditions hold:

1. Both u and v are isolated

2. Either u or v is isolated

3. There exist two nonadjacent edges e1 and e2 of G such that e1 is incident with u and
e2 is incident with v.

In this paper we derive sufficient conditions for cartesian and tensor products of two graphs

to be Hausdroff.
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1. Introduction

All the graphs considered here are finite and simple. In this paper we denote the
set of vertices of G by V (G), the set of edges of G by E(G) and the minimum
degree of G by δ(G).
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The degree [4] of a vertex v in a graph G, denoted by deg v, is the number
of edges incident with v. A pendant vertex [6] in a graph G is a vertex of
degree one. A vertex v is isolated [2] if deg v = 0. By an empty graph [5]
we mean a graph with no edges. Two vertices u and v of G are adjacent [8],
if uv is an edge of G. A simple graph is said to be complete[7] if every pair
of distinct vertices of G are adjacent in G. A complete graph of n vertices is
denoted by Kn. A connected graph that has no cut vertices is called a block

[5]. A block of G containing exactly one cut vertex of G is called an end-block

[3] of G. The Cartesian product [9] G�H of two graphs G = (V (G), E(G)) and
H = (V (H), E(H)) is the graph with vertex set V (G)×V (H) where the vertex
(u1, v1) is adjacent to the vertex (u2, v2) whenever u1u2 ∈ E(G) and v1 = v2, or
u1 = u2 and v1v2 ∈ E(H). The Tensor product(or direct product)[1] G×H of
two graphs G and H is the graph with the vertex set V (G)×V (H), two vertices
(u1, v1) and (u2, v2) being adjacent in G×H if, and only if, u1u2 ∈ E(G) and
v1v2 ∈ E(H). A graph G is said to be Hausdroff [10] if for any two distinct
vertices u and v of G, one of the following three conditions hold: (1) Both u

and v are isolated (2) Either u or v is isolated (3) There exist two nonadjacent
edges e1 and e2 of G such that e1 is incident with u and e2 is incident with v.

From the definition of a Hausdroff graph we have if G is a graph with δ(G) = 1,
then it cannot be Hausdroff. In particular K2 is not Hausdroff. Also if G is
Hausdroff, then any supergraph of G is Hausdroff.

Theorem 1. [10] Let G = (V (G), E(G)) be a graph with δ(G) ≥ 3 then,
G is Hausdroff.

2. Cartesian Product

From the definition of cartesian product of graphs we have:

Proposition 2. The cartesian product Kn�Kn is Hausdroff for every n.

Proposition 3. The cartesian product Kn�Km (n 6= m) is Hausdroff if,
and only if, either n = 1 and m ≥ 4 or n ≥ 2 and m ≥ 2.

Corollary 4. The cartesian product Cn�Cm is Hausdroff ∀n,m.

Proposition 5. The cartesian product Pn�Pm is Hausdroff ∀n,m.

Example 6.

Example 6 shows that the cartesian product of two non-Hausdroff graphs
can be Hausdroff.
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Figure 1: Cartesian product of paths P1 and P2

Theorem 7. Let G1 and G2 be two graphs with no isolated vertices. Then
G1�G2 is Hausdroff.

Proof. Let (ui, vj) and (ur, vs) be two distinct vertices of G1�G2.

Case 1. ui = ur
Then the vertices vj and vs of G2 are distinct. Since G1 is a graph with

no isolated vertices, G1 contains a vertex up such that ui and up are adjacent
in G1. Then (ui, vj)(up, vj) and (ui, vs)(up, vs) are two nonadjacent edges of
G1�G2.

Case 2. ui 6= ur
In this case, either vj = vs or vj 6= vs. Suppose vj = vs. Since G1�G2 =

G2�G1, the result follows as in Case 1. So we need only to consider the case vj 6=
vs. In this case if ui is adjacent to ur, then (ui, vj)(ur, vj) and (ur, vs)(ui, vs) are
two nonadjacent edges of G1�G2 incident with (ui, vj) and (ur, vs) respectively.
If ui is not adjacent to ur, since G1 is free from isolated vertices, there exist
vertices up and uq distinct from ui and ur such that ui is adjacent to up and
ur is adjacent to uq in G1. ( up may be equal to uq ) Then (ui, vj)(up, vj) and
(ur, vs)(uq, vs) are two nonadjacent edges of G1�G2 incident with (ui, vj) and
(ur, vs) respectively.

Hence the theorem.

Remark 8. Theorem 7 need not be true if both the graphs contain isolated
vertices. (see. Figure [2]).

If G1 contains an isolated vertex u and G2 contains a pendant edge vw then
(u, v)(u,w) is a pendant edge of the cartesian product G1�G2 of G1 and G2.
Thus in such cases G1�G2 can never be Hausdroff. We state this result as a
proposition as follows:
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Figure 3: Cartesian product of graphs

Proposition 9. The cartesian product G1�G2 of two graphs G1 and G2

is not Hausdroff if δ(G1) = 0 and δ(G2) = 1.

The question then arise is that what happens to the cartesian product when
we increase the minimum degree of the graph G2. Unfortunately, the result
remains failed in certain cases. For example, consider the graphs G1 and G2

and their cartesian product in Figure 3. There δ(G1) = 0 and δ(G2) = 2. The
cartesian product G1�G2 of G1 and G2 contains a triangle, hence it cannot be
Hausdroff.

Example 10.

But one can overcome this difficult situation by giving some restrictions to
the graph G2.

Theorem 11. Let G1 be any graph and G2 be a graph with no triangle
as end-block. If δ(G2) = 2, then G1�G2 is Hausdroff.
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Proof. Let (ui, vj) and (ur, vs) be two distinct vertices of G1�G2.

Case 1. ui = ur
Suppose vj and vs are adjacent vertices of G2. Since δ(G2) = 2, there exists

a vertex vp distinct from vs such that vj is adjacent to vp. If vs and vp are
not adjacent then vs must be adjacent to some vertex vq of G2 distinct from vj
and vp. Then (ui, vj)(ui, vp) and (ui, vs)(ui, vq) are two nonadjacent edges of
G1�G2 incident with (ui, vj) and (ur, vs) respectively.

If vs and vp are adjacent then the subgraph induced by the vertices vj , vs, vp
is a triangle in G2. Since G2 contains no triangle as end-block either vs is
adjacent to a vertex vq distinct from vj and vp or vj is adjacent to a vertex
vt distinct from vs and vp. In the first case (ui, vj)(ui, vp) and (ui, vs)(ui, vq)
are two nonadjacent edges of G1�G2. In the second case (ui, vj)(ui, vt) and
(ui, vs)(ui, vp) are two nonadjacent edges of G1�G2.

Suppose vj and vs are not adjacent in G2. In this case since δ(G2) = 2,
we can choose two distinct vertices vp and vq of G2 such that vp is adjacent
to vj and vq is adjacent to vs, then (ui, vj)(ui, vp) and (ui, vs)(ui, vq) are two
nonadjacent edges of G1�G2 incident with (ui, vj) and (ur, vs) respectively.

Case 2. ui 6= ur
Suppose vj = vs, since δ(G2) = 2, there exist two distinct vertices vp

and vq such that vj is adjacent to both vp and vq. Then (ui, vj)(ui, vp) and
(ur, vs)(ur, vq) are two nonadjacent edges of G1�G2.

Suppose vj 6= vs, then by proceeding as in the proof of Case 1 we get two
nonadjacent edges incident with the vertices (ui, vj) and (ur, vs). First of all we
consider the case vj and vs are adjacent vertices of G2. Since δ(G2) = 2, there
exists a vertex vp distinct from vs such that vp is adjacent to vj . If vs and vp are
not adjacent then vs must be adjacent to some vertex vq of G2 distinct from vj
and vp. Which implies (ui, vj)(ui, vp) and (ui, vs)(ui, vq) are two nonadjacent
edges of G1�G2 incident with (ui, vj) and (ur, vs) respectively. If vs and vp
are adjacent then vj, vs, vp form a triangle. Since G2 contains no triangle as
end-block either vs is adjacent to a vertex vq distinct from vj and vp or vj is
adjacent to a vertex vt distinct from vs and vp. In the first case (ui, vj)(ui, vp)
and (ur, vs)(ur, vq) are two nonadjacent edges of G1�G2. In the second case
(ui, vj)(ui, vt) and (ur, vs)(ur, vp) are two nonadjacent edges of G1�G2.

Suppose vj and vs are not adjacent in G2. In this case, since δ(G2) = 2,
we can choose two distinct vertices vp and vq of G2 such that vj is adjacent to
vp and vs is adjacent to vq. Then, (ui, vj)(ui, vp) and (ur, vs)(ur, vq) are two
nonadjacent edges of G1�G2.

Thus in all the cases we have proved that for any two distinct vertices
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(ui, vj), (ur, vs) of G1�G2 there exist two nonadjacent edges e1 and e2 of G1�G2

such that e1 is incident with (ui, vj) and e2 is incident with (ur, vs). Hence
G1�G2 is Hausdroff.

Theorem 12. Let G1 be any graph and G2 be a graph with δ(G2) ≥ 3,
then G1�G2 is Hausdroff.

Proof. Let (u, v) ∈ V (G1�G2), then u ∈ V (G1) and v ∈ V (G2). Since
δ(G2) ≥ 3, v is adjacent to at least three vertices, say v1, v2, v3 of G2. Then
the vertex (u, v) is adjacent to the vertices (u, v1), (u, v2) and (u, v3) of G1�G2.
Therefore, deg(u, v) ≥ 3. Since (u, v) is an arbitrary vertex ofG1�G2, δ(G1�G2)
≥ 3. Hence by Theorem 1, G1�G2 is Hausdroff.

Proposition 13. Let G1 be an empty graph and G2 be a Hausdroff graph
then G1�G2 is Hausdroff.

Proof. Let {u1, u2, . . . , un} and {v1, v2, . . . , vm} be the vertex sets of G1

and G2 respectively. For i = 1, 2, . . . , n, let Hi = 〈{(ui, vj); j = 1, 2, . . . ,m}〉.

Then G1�G2 =

n⋃

i=1

Hi. Note that for every i, Hi is isomorphic to G2 and hence

Hausdroff. Therefore, the graph G1�G2, being the union of Hausdroff graphs,
is Hausdroff.

Remark 14. Since G1�G2 = G2�G1, Propositions 9, 13 and Theorems
7,11,12 are still true even if we interchange the roles of G1 and G2.

Theorem 15. Cartesian product of two Hausdroff graphs is Hausdroff.

Proof. Let G1 and G2 be two Hausdroff graphs. Then, for i = 1, 2, Gi =
Ki ∪ Hi, where V (Ki) is the set all isolated vertices of Gi and V (Hi) is the
set of all non-isolated vertices of Gi. Hence G1�G2 = (K1�K2) ∪ (K1�H2) ∪
(H1�K2) ∪ (H1�H2). By Proposition 13, (K1�K2), (K1�H2) and (H1�K2)
are Hausdroff. By Theorem 7, H1�H2 is Hausdroff. Therefore, G1�G2 is
Hausdroff.
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Figure 4: Tensor product of K2 and K3

3. Tensor Product

Another interesting graph product that we can consider is that of the tensor
product. Let us start with the tensor product of K2 and K3. Though both K2

and K3 are non-Hausdroff their tensor product seems to be Hausdroff.

Note that the graph K2 is free from isolated vertices and the graph K3 has
minimum degree 2. Lemma 16 shows that this result is true in general. That
is, if δ(G1) ≥ 1 and δ(G2) = 0, then G1 ×G2 is Hausdroff.

Lemma 16. Let G1 be a graph with no isolated vertices and G2 be a
graph with δ(G2) = 2. Then G1 ×G2 is Hausdroff.

Proof. Let V (G1) = {ui, i = 1, 2, . . . m} and V (G2) = {vj , j = 1, 2, . . . n}.
Then, V (G1 × G2) = {(ui, vj); i = 1, 2, . . . m, j = 1, 2, . . . n}. Consider two
distinct vertices (ui, vj) and (ur, vs) of G1 ×G2. Since G1 contains no isolated
vertices, the vertex ui is adjacent to at least one vertex of G1.

Case 1. ui and ur are adjacent vertices of G1.

Since δ(G2) = 2, there exists a vertex vp distinct from vs such that vp is
adjacent to vj. Similarly there exists a vertex vq distinct from vj such that vq
is adjacent to vs. Then (ui, vj)(ur, vp) and (ur, vs)(ui, vq) are two nonadjacent
edges of G1 ×G2 incident with (ui, vj) and (ur, vs) respectively.

Case 2. ui and ur are nonadjacent vertices of G1.

Choose vertices up and uq of G1 which are adjacent to the vertices ui and ur
respectively. If vj and vs are adjacent in G2 then, the edges (ui, vj)(up, vs) and
(ur, vs)(uq, vj) are two nonadjacent edges of G1 ×G2 incident with (ui, vj) and
(ur, vs) respectively. Otherwise, since δ(G2) = 2, we can choose two distinct
vertices vp and vq of G2 such that vp is adjacent to vj and vq is adjacent to vs.
Then, the edges (ui, vj)(up, vp) and (ur, vs)(uq, vq) are two nonadjacent edges
of G1 ×G2 incident with (ui, vj) and (ur, vs) respectively.
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Theorem 17 shows that the restriction δ(G2) = 2 on the second graph G2

can be withdrawn.

Theorem 17. Let G1 be a graph with no isolated vertices and G2 be a
graph with δ(G2) ≥ 2. Then, the tensor product G1 × G2 of G1 and G2 is
Hausdroff.

Proof. If δ(G2) = 2, then the proof follows from Lemma 16. Now suppose
δ(G2) ≥ 3. Let (u, v) be a vertex of G1 × G2. Since G1 is a graph with no
isolated vertices, the vertex u is adjacent to at least one vertex say w of G1.
Since δ(G2) ≥ 3, the vertex v is adjacent to at least three vertices say v1, v2, v3 of
G2. Then the vertex (u, v) is adjacent to the vertices (w, v1), (w, v2), and (w, v3)
of G1 ×G2. Therefore, deg(u, v) ≥ 3. Since (u, v) is arbitrary, δ(G1 ×G2) ≥ 3.
Hence by Theorem 1, G1 ×G2 is Hausdroff.

Lemma 18. If one of G1 and G2 be empty graphs then, G1 × G2 is
Hausdroff.

Proof. Let one of G1 and G2 be empty graphs then, G1 ×G2 is an empty
graph. This implies G1 ×G2 is Hausdroff.

Theorem 19. Let G1 be any graph and G2 be a graph with δ(G2) ≥ 2,
then G1 ×G2 is Hausdroff.

Proof. We can write G1 = K∪H, where V (K) is the set all isolated vertices
of G1 and V (H) is the set all non-isolated vertices of G1. Then G1 × G2 =
(K × G2) ∪ (H × G2). Since K is empty by Lemma 18, K × G1 is Hausdroff.
By Theorem 17, H ×G2 is Hausdroff. Therefore, the graph G1 ×G2, being the
union of Hausdroff graphs, is Hausdroff.

Corollary 20. For every n,m ≥ 3, Cn × Cm is Hausdroff.

Theorem 21. Let G1 and G2 be two graphs such that both G1 and G2

contain at least one pendant vertex. Then G1 ×G2 can never be Hausdroff.

Proof. Let u be a pendant vertex with pendant edge ux in G1 and let v be
a pendant vertex with uy as pendant edge in G2. Then (u, v)(x, y) is a pendant
edge in G1 ×G2. Therefore, G1 ×G2 is not Hausdroff.

Theorem 22. Tensor product of any two Hausdroff graphs is Hausdroff.
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Proof. Let G1 and G2 be the given Hausdroff graphs. For i = 1, 2, we write
Gi = Ki ∪Hi, where V (Ki) is the set all isolated vertices of Gi and V (Hi) is
the set all non-isolated vertices of Gi. Then G1×G2 = (K1×K2)∪ (K1×H2)∪
(H1 ×K2) ∪ (H1 × H2). Since both K1 and K2 are empty graphs by Lemma
18, K1 × K2, K1 × H2, H1 × K2 are Hausdroff. By Theorem 19, H1 × H2 is
Hausdroff. Therefore, the graph G1 × G2, being the finite union of Hausdroff
graphs, is Hausdroff.

4. Conclusion

In this paper we have discussed conditions under which Cartesian product of two
graphs is Hausdroff. It is identified that Cartesian product of two Hausdroff
Graphs is Hausdroff. Conditions under which Tensor product of two graphs
become Hausdroff have been formulated. There are many unsolved problems
in this area which are yet to be settled.
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