Reg.No:

FIRST SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER 2020

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U BCA1 C01 - MATHEMATICAL FOUNDATION OF COMPUTER APPLICATION

(Mathematics - Complementary Course)

(2019 Admission onwards)

Time: 2.00 Hours Maximum: 60 Marks

Credit: 3

Part A (Short answer questions)

Answer *all* question. Each question carries 2 marks.

1. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
, find $2A$ and $\frac{A}{2}$

- 2. Find order of the matrices $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
- 3. If $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, then prove that $(A^T)^T = A$
- 4. What are the three elementary row operations
- 5. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$
- 6. Find the value of $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{vmatrix}$
- 7. Give the expression for A^{-1}
- 8. Find $|\bar{a}|$, if $\bar{a}=2\bar{i}-3\bar{j}+5\bar{k}$
- 9. Evaluate $\lim_{x\to 5} \left(\frac{x-5}{x^2-25}\right)$
- 10. $\frac{d}{dx}(x^n) = \dots$
- 11. Evaluate $\int 3x^2 dx$

12. Evaluate
$$\int_0^2 x^2 dx$$

(Ceiling: 20 Marks)

Part B (Short essay questions)

Answer *all* question. Each question carries 5 marks.

13. Find the inverse of the matrix
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{pmatrix}$$

14. Check the dependency of
$$v_1=[\,1\quad 9\quad 9\quad 8\,],\,v_2=[\,2\quad 0\quad 0\quad 3\,]$$
 and $v_3=[\,2\quad 0\quad 0\quad 8\,]$

15. If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 then show that $A^2 - 5A - 2I = 0$

16. Using first principle find
$$\frac{dy}{dx}$$
 if $y = \frac{1}{x}$

17. Find
$$\frac{dy}{dx}$$
 if $y = \frac{2x+5}{3x-2}$

18. Evaluate
$$\int \frac{x^3 - 1}{x^2} dx$$

19. Evaluate
$$\int \frac{dx}{(x-2)(x-3)}$$

(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any *one* question. Each question carries 10 marks.

20. (a) Show that the matrix
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$
 satisfies the equation $A^2 - 4A + I = 0$.

(b) Solve using Crammers Rule

$$x + 2y + 3z = 14$$

 $2x - y + 5z = 15$
 $3x - 2y - 4z = -13$

21. Find
$$\frac{dy}{dx}$$
 if,
(a) $y = cos(sinx)$

(b)
$$y = sec(tan(\sqrt{x}))$$

 $(1 \times 10 = 10 \text{ Marks})$