THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021

(CUCBCSS-UG)

CC15U MAT3 B03/ CC18U MAT3 B03 - CALCULUS AND ANALYTIC GEOMETRY

(Mathematics - Core Course)

(2015 to 2018 Admissions – Supplementary/Improvement)

Time: Three Hours Maximum: 80 Marks

Part-A

Answer all questions. Each question carries 1 mark.

- 1. Evaluate $e^{3 \ln 2}$
- 2. Find $\lim_{x\to 0} \frac{e^{x}-1}{x}$
- 3. The hyperbolic sine of x is defined as
- 4. Define monotone sequence.
- 5. Check the convergence of $\sum_{n=1}^{\infty} n^2$
- 6. State ratio test.
- 7. The Taylor series expansion of f(x) about a point x = a is
- 8. Find a formula for the n^{th} term of the sequence $1, -1, 1, -1, \dots \dots$
- 9. Define absolute convergence test.
- 10. Find the vertices of the ellipse $2x^2 + 3y^2 = 6$.
- 11. Write the parametric equation of the circle $x^2 + y^2 = 1$.
- 12. Graph the set of points whose polar coordinates satisfy the condition $0 \le r \le 1$.

 $(12 \times 1 = 12 \text{ Marks})$

Part B

Answer any *nine* questions. Each question carries 2 marks.

- 13. Evaluate $\int_0^{\pi/2} e^{\sin x} \cos x \, dx$
- 14. Find $\frac{dy}{dx}$ if $y = x^x$, x > 0.
- 15. Evaluate $\min_{x\to 0} x^x$
- 16. Evaluate $\int_0^{\ln 2} 4e^x \sinh x \, dx$.
- 17. Evaluate $\lim_{n\to\infty} \ln \left(1 + \frac{1}{n}\right)^n$.
- 18. Test the convergence of $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$
- 19. Test the convergence of $\sum_{n=1}^{\infty} \frac{n^n}{n!}$.

- 20. Use the discriminant to decide whether $x^2 3xy + y^2 x = 0$ is parabola.
- 21. Find the equation of the hyperbola with foci $(0, \pm \sqrt{2})$ and asymptotes $y = \pm x$.
- 22. Replace the cartesian equation $y^2 = 4x$ by equivalent polar equation.
- 23. Find the slope of the curve $x = 4 \sin t$ and $y = 2 \cos t$.
- 24. Polar equation of a conic is $r = \frac{12}{3+3\sin\theta}$. Identify the conic.

 $(9 \times 2 = 18 \text{ Marks})$

Part C

Answer any six questions. Each question carries 5 marks.

- 25. Given $\sinh x = -\frac{3}{4}$. Find the other five hyperbolic functions.
- 26. If x is a real, show that $cosh^{-1}x = log(x + \sqrt{x^2 1})$
- 27. Test the convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \frac{7}{4.5.6} + \cdots$
- 28. Test the convergence of the series $\frac{x}{1+x} \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} \cdots (0 < x < 1)$
- 29. By a suitable rotation of the rectangular axes about the origin, remove the xy term in $5x^2 6xy + 5y^2 = 8$.
- 30. Find the tangent to the curve $x = 4 \sin t$ and $y = 2 \cos t$ at $t = \frac{\pi}{4}$. Also find the value of $\frac{d^2y}{dx^2}$ at this point.
- 31. Find the area of the surface generated by revolving the curve whose parametrization is $x = t + \sqrt{2}$, $y = \frac{t^2}{2} + \sqrt{2}t$, $-\sqrt{2} \le t \le \sqrt{2}$ about the y axis
- 32. Graph the curve $r = 1 \cos \theta$.
- 33. Find the area of the curve $r^2 = a^2 \cos 2\theta$

 $(6 \times 5 = 30 \text{ Marks})$

Part D

Answer any two questions. Each question carries 10 marks.

- 34. Show that the series $x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \cdots$ converges to $tan^{-1}x$ for all -1 < x < 1.
- 35. Find the length of the astroid $x = cos^3t$, $y = sin^3t$, $0 \le t \le 2\pi$. Also find the centroid of the first quadrant arc of the above astroid.
- 36. Define eccentricity of a conic section. Clarify the conic section by eccentricity. How are an ellipses shape and eccentricity related?

 $(2 \times 10 = 20 \text{ Marks})$
