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Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

Find the vector function that describes the curve C of intersection of the plane \(y=2x\) and the paraboloid
\(z=9-x"2-y"2\).

If \( z=4x"3y"2-4x"2+y"6+1\), find \( \dfrac{\partial z}{\partial x}\)
Find the level curve of \( f(x,y)=\frac{x"2}{4}+\frac{y"2}{9}\) passing through the point \( (-2,-3)\)
If \( \vec{r}=x \vec{i}+ y\vec{j}+z\vec{k} \), prove that \( \nabla \times \vec{r} =0 )

Show that the line integral \( \displaystyle \int_{(0,0)}{(2,8)} (y"3+3x"2y)dx+(x"3+3y”"2x+1)dy \) is
path independent.

State Stokes' theorem.

Convert the equation \( x*2+z”2=16\) to cylindrical coordinates.
State the divergence theorem.

Express the complex number \(i(5+71)\) in the form \(a+ib\).
Show that the function \(f(z) =x + 4iy\) is nowhere differentiable.
Express \(eM-{{\pi}\over 3}i}\) in the form \(a +ib\).

State Cauchy-Goursat theorem.
(Ceiling: 20 Marks)
Part B (Short essay questions - Paragraph)
Answer all questions. Each question carries 5 marks.

If \(\textbf{r}(t) =t \textbf{i}+\frac{1}{2} t"2 \textbf{j}+\frac{1}{3}t"3\textbf{k} \) gives the position
vector of a moving particle. Find the tangential and normal components of acceleration at any time t.
Find the curvature.
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Find the directional derivative of \( f(x,y)=2x"2y"3+6xy \) at \( (1,1) \) in the direction of a unit vector
whose angle with the positive x-axis is \( \frac{\pi}{6} \)

Evaluate \(\displaystyle \int_Cxydx+x”~2dy \) where C given by \( y=x"3 ; -1\leq x\leq 2. \)

Evaluate \(\displaystyle \iint_Rxe™{y~2}dA \) over the region R in the first quadrant bounded by the
graphs of \( y=x"2, \quad x=0,\quad y=4.\)

If T is the transformation from spherical to rectangular coordinates, show that \( \dfrac{\partial
(x,y,z)H{\partial (\rho, \phi, \theta}=\rho”™2 \sin \phi.\)

Verify that the function \(u(x,y) =x"2-y~2\) is harmonic. Also find v, the harmonic conjugate of u.

Evaluate \(\displaystyle\int_{C}\frac{1+z}{z}\; dz\), where \(C\) is the right half of the circle \(|z|=1\),
\(z=-1\) to \(z=1\).
(Ceiling: 30 Marks)
Part C (Essay questions)
Answer any one question. The question carries 10 marks.

Verify Green's theorem by evaluating both the integrals, \(\displaystyle \oint_C \left( (x-y)dx +xy
dy\right)=\iint. R (y+1)dA \) where C is the triangle with vertices \( (0,0), (1,0),(1,3) \) taken in
anticlockwise direction.

State Cauchy's integral formula. Using it evaluate \(\displaystyle\oint_{C}\frac{e"{z"{2}}}{z-
i"{}}dz\), where \(C\) is the circle \(Jz-i|=1.\)
(1 x 10 = 10 Marks)
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