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SECTION A
Answer all questions. Each question carries 1 mark.

State the well-ordering property of Natural numbers.
Give an example of a denumerable set.

Write the Trichotomy Property of R.

i

Find all x that satisfy the inequality |2x + 5| < 15.

o

IfS = {% t ne N}, thensup S =..............

Write any periodic decimal with period 2.
State the density theorem.

Give an example of a bounded sequence which is not convergent.

© o N o

Write any monotone sequence.

10. Give an example of a closed set.

11. If arg z; = 6,and arg z, = 6,, then argj—1 S v
2

12. limx? + iy3 = .o,
zZ—2

(12 x 1 =12 Marks)

SECTION B
Answer any ten questions. Each question carries 4 marks.

13. Prove thatifa # 0and b in Rare such thata.b = 1, then b = 1

a

14. Prove that |a + b| < |a|+ |b|.

15. Prove that +/2 is irrational.

16. State and prove Bernoulli’s inequality.

17. Find the rational number represented by the decimal 1.25137137 ...137 ...
18. Prove that every convergent sequence is bounded.

19. State and prove Bolzano Weierstrass theorem.

20. Evaluate lim (Siz n).
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35.

36.
37.

38.

Prove that the intersection of finite collection of open sets in R is open.
Define cantor set.
Find the principal argument of (+/3 — )®
Prove that Re(iz) = —Im(2).
Solve the equation |e® — 1| =2for 0 < 6 < 2.
Find the real and imaginary parts of f(z) = 2z2-3z in Cartesian co-ordinates.
(10 x 4 = 40 Marks)

SECTION C
Answer any six questions. Each question carries 7 marks.

Using mathematical induction, prove that (n + 1)! = 2™,vn € N.
Let A € R. Prove that there is no surjection from A to the set P (A) of all subsets of A.
Let S be a nonempty bounded set in R and for any a € R, aS = {as : s € §}. Prove
that sup(aS) = aSup S, ifa > 0 and Sup (aS) = ainfS§,ifa < 0.
Prove that the set of real numbers is uncountable.
State and prove monotone subsequence theorem.
State and prove Squeeze theorem.
Show that a subset of R is closed if and only if it contains all of its limit points.
Prove that v2|z| > |Re (2)| + |Im (2)].
Find the three cube roots of —8i.
(6 x 7 =42 Marks)

SECTION D
Answer any two questions. Each question carries 13 marks.

State and prove nested interval property of R..

(a) State and prove monotone convergence theorem

(b) Let Y = (y,,) be defined inductively by y; = 1,y,,1 = i(Zyn +3),vneN
Show that Yis convergent and find the limit.

Prove that F be a closed subset of R if and only if every convergent sequence in

F converges to F.
(2 x 13 = 26 Marks)
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