Reg.No:

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U BCA1 C01 - MATHEMATICAL FOUNDATION OF COMPUTER APPLICATION

(Mathematics - Complementary Course)

(2021 Admissions)

Time: 2.00 Hours Maximum: 60 Marks

Credit: 3

Part A (Short answer questions)

Answer all questions. Each question carries 2 marks.

1. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
, find $2A$ and $\frac{A}{2}$

- 2. Define Upper triangular matrix.
- 3. Give a Symmetric matrix.
- 4. Define trivial solution of AX = 0
- 5. What are the three elementary row operations?
- 6. When we say that x_1, x_2, \ldots, x_n are linearly independent?
- 7. Find the value of $\begin{vmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 1 & 2 & 3 \end{vmatrix}$
- 8. Give the expression for A^{-1}
- 9. Evaluate $\lim_{x\to 2}(-x^2+5x-2)$
- 10. Find $\frac{dy}{dx}$, if $y = x + \frac{1}{x}$
- 11. Evaluate $\int \frac{1}{x} dx$
- 12. Evaluate $\int_0^2 9x^2 dx$

(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph)

Answer all questions. Each question carries 5 marks.

13. Using Crammer's rule, solve.

$$x + y + z = 9$$
$$2x + 5y + 7z = 52$$
$$2x + y - z = 0$$

14. If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 then show that $A^2 - 5A - 2I = 0$

15. Find
$$|ar{a} imesar{b}|$$
, if $ar{a}=3ar{i}+ar{j}+4ar{k}$ and $ar{b}=ar{i}-ar{j}+ar{k}$

16. Find
$$\frac{dy}{dx}$$
 by using first principle, if $y = x^3 - x$

17. Find
$$\frac{dy}{dx}$$
, if $y = (x + \frac{1}{x})(x - \frac{1}{x} + 1)$

18. Evaluate
$$\int (\sin x + \cos x) dx$$

19. Evaluate
$$\int \frac{dx}{(x-1)(x-3)}$$

(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any one question. The question carries 10 marks.

20. Find the rank of the matrix
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & -2 & 1 \\ 2 & 0 & -3 & 2 \\ 3 & 3 & -3 & 3 \end{pmatrix}$$

21. (a) Find
$$\frac{dy}{dx}$$
, if $y = cos(sinx)$

(b) Find
$$\frac{dy}{dx}$$
, if $y = sec(tan(\sqrt{x}))$

 $(1 \times 10 = 10 \text{ Marks})$
