D M	
Reg.No:	

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U CHE2 C02 - PHYSICAL CHEMISTRY

(Chemistry - Complementary Course)

(2019 Admission onwards)

Time: 2.00 Hours Maximum: 60 Marks

Credit: 2

Part A (Short answer questions)

Answer *all* questions. Each question carries 2 marks.

- 1. Define path function. Give an example.
- 2. Give the mathematical formulation for first law of thermodynamics
- 3. Define standard Gibbs energy change.
- 4. Define ideal gas.
- 5. Give the van der Waals' equation for n molecules of a gas and explain the terms.
- 6. Define unit cell.
- 7. State the law of constancy of interfacial angles
- 8. Give the Bragg equation and state the terms involved.
- 9. How does the vapour pressure of a liquid affect on temperature?
- 10. How does pressure affect the solubility of a gas in a given liquid?
- 11. What is meant by reverse osmosis?
- 12. What is meant by a reference electrode? Give one example.

(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph)

Answer *all* questions. Each question carries 5 marks.

- 13. Calculate the entropy fusion of ice if its enthalpy of fusion at 273 K is 335 J/g.
- 14. Discuss the effect of temperature on the distribution of molecular velocities.

- 15. What are the characteristics of cholesteric liquid crystals?
- 16. Calculate the molarity of a glucose solution (molar mass=180gmol-1) which shows an osmotic pressure of 2.465 atm at 27°C.
- 17. Explain how the molecular mass of a non-volatile solute is determined by osmometry.
- 18. What is meant by molar conductance of an electrolyte solution? How does it vary with dilution for (i) a stong electrolyte and (ii) for a weak electrolyte? Explain.
- 19. Give the Nernst equations for single electrode potential and cell potential and explain the terms involved.

(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any *one* question. The question carries 10 marks.

- 20. (a) Define the term Gibbs energy.
 - (b) Show that decrease in Gibbs free energy in a process is equal to the useful work done by the system.
- 21. (a) What are buffer solutions?
 - (b) Explain the term' buffer action'.
 - (c) Give an example each for two types of buffer solutions and explain the action of each.
 - (d) Explain the significance of buffer solutions.

 $(1 \times 10 = 10 \text{ Marks})$
