1	9	U	6	0	2
_	_	$\mathbf{-}$	v	v	_

(Pages: 2)

Name:

Reg. No.....

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS-UG)

CC19U MTS6 B11 - COMPLEX ANALYSIS

(Mathematics - Core Course) (2019 Admission - Regular)

Time: 2 ½ Hours Maximum: 80 Marks

Credit: 5

Section A

Answer all questions. Each question carries 2 marks.

- 1. Find the derivative of $(z^2 (1 + i)z + 3)$.
- 2. (a) The period of e^z is
 - (b) The period of e^{iz} is
- 3. Write the principal value of $Ln((1+i)^4)$ in the form of a+ib.
- 4. Define a fundamental region.
- 5. State Cauchy-Goursat theorem.
- 6. Use Cauchy's integral formula to evaluate $\oint_C \frac{z^2-4z+4}{z+i} dz$ where C is the circle |z|=2.
- 7. Find the maximum modulus of f(z) = -iz + 1 on the circular region $|z| \le 5$
- 8. State the fundamental theorem for contour integrals.
- 9. Evaluate $\int_C \frac{e^z}{z \pi i} dz$ where C is the circle |z| = 4.
- 10. Expand $e^{\frac{3}{z}}$ in a Laurent series for $0 < |z| < \infty$.
- 11. Determine the order of the poles of $f(z) = \frac{3z-1}{z^2+2z+5}$.
- 12. Identify the type of singularity of the function $\frac{\sin z}{z^2}$.
- 13. State the argument principle.
- 14. Find the residue at each pole of the function $f(z) = \frac{z}{z^2 + 16}$.
- 15. Use Cauchy's residue theorem to evaluate $\oint_C \frac{1}{(z-1)^2(z-5)} dz$ where the contour C is the circle |z| = 2.

(Ceiling: 25 Marks)

Section B

Answer *all* questions. Each question carries 5 marks.

16. Show that the function $f(z) = x^2 + y^2 + 2ixy$ is not analytic at any point but is differentiable along the x-axis.

- 17. Show that $w = e^z$ maps the fundamental region $-\infty < x < \infty$, $-\pi < y \le \pi$ onto the set |w| > 0.
- 18. Evaluate $\oint_C \frac{z^2}{z^2+4} dz$ along (a) |z-i|=2 and (b) |z+2i|=1 using Cauchy's integral formula.
- 19. Find an upperbound for the absolute value of $\oint_C \frac{e^z}{z+1} dz$ where C is the circle |z| = 4.
- 20. Expand $f(z) = \frac{1}{(z-1)^2(z-3)}$ in a Laurent series valid for 0 < |z-3| < 2.
- 21. Determine whether the given sequence $\{\frac{3ni+2}{n+ni}\}$ converges or diverges.
- 22. Use Rouche's theorem to show that none of the zeros of $g(z) = z^2 + 10z^3 + 14$ lie within the disk |z| < 1.
- 23. Find the residue at each pole of the given function $f(z) = \frac{5z^2 4z + 3}{(z+1)(z+2)(z+3)}$

(Ceiling: 35 Marks)

Section C

Answer any *two* questions. Each question carries 10 marks.

- 24. Find all solutions to the equation $\sin z = 5$.
- 25. Evaluate (a) $\int_C xy^2 dx$ (b) $\int_C xy^2 dy$ and (c) $\int_C xy^2 ds$ where the path of integration C is the quarter circle defined by $x=4\cos t,\ y=4\sin t,\ 0\le t\le \frac{\pi}{2}$.
- 26. State and prove Taylor's theorem.
- 27. Evaluate the Cauchy principal value of $\int_0^\infty \frac{\sin x}{x^2+9} dx$.

 $(2 \times 10 = 20 \text{ Marks})$
