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Section A 

Answer all questions. Each question carries 1 weightage. 

1.   Write a note on ket and bra spaces. 

2.   Prove that the eigenvalues of a Hermitian operators are real. 

3.   What is a Unitary operator? How can it be used for change of basis? 

4.   Write the time evolution operator for a spin half system. 

5.   Explain the importance of commutation of an operator with Hamiltonian using Heisenberg equation of motion. 

6.   Write the expressions for the application of annihilation, creation and number operator on a eigenket of the Hamiltonian for a quantum 

harmonic oscillator. 

7.   Write the matrices which can be used to rotate the Cartesian coordinates by an angle equation  (ϕ) (ϕ) with respect to x, y, and z axes. 

8.   Write an expression for probability flux. Write the continuity equation based on it. 

   (8 × 1 = 8 Weightage) 

Section B 

Answer any two questions. Each question carries 5 weightage. 

9.   Discuss how measurement affects a system prepared in one of the base kets. Compare it with the case where the system is prepared in 

a general state. 

10.   Discuss Schrodinger picture and Heisenberg picture. 

11.   Derive the equation for the energy of an isotropic harmonic oscillator using the radial equation for a central potential. 

12.   What is relation between symmetry and conservation laws? How are the translation in space and time connected to the conservation 

of linear momentum and energy respectively? 

(2 × 5 = 10 Weightage) 

 

 

 

 

Section C 

Answer any four questions. Each question carries 3 weightage. 

13.   Show that  ([X,Pn]=iℏXPn−1) ([X,Pn]=iℏXPn−1) 

14.   Consider an operator (A=Xd/dx+2)(A=Xd/dx+2), where X is arbitrary operator and x is the position  

(a) Find the eigenfunction of (A)(A) corresponding to the eigen value 0.        



(b) Is the operator (A)(A) Hermitian.      

(c) Calculate ([X,[A,X]]).([X,[A,X]]). 

15.   Consider a one-dimensional particle which is confined within the region(0≤x≤a)(0≤x≤a) and whose wave function 

is(ψ(x,t)=sin(πx/a)exp(−iωt))(ψ(x,t)=sin⁡(πx/a)exp(−iωt)). Find the potential (V)(V). 

16.   A particle of mass (m)(m), which moves freely inside an infinite potential well of length (a)(a), has the following initial wave 

function 

at (t=0);(t=0); (ψ(x,0)=Aa√sin(πx/a)+3√5asin(3πx/a)+15√asin(5πx/a))(ψ(x,0)=Aasin⁡(πx/a)+35asin⁡(3πx/a)+15asin⁡(5πx/a)), 

where (A)(A)is a real constant. 

(a) Find (A)(A) so that (ψ)(ψ)is normalized. 

(b) If measurements of the energy are carried out, what are the values that will be found and what are 

      the corresponding probabilities? 

(c) Find the wave function at a later time t. 

17.   Calculate the commutator between the x and y components of the orbital angular momentum operator. 

18.   Consider a system with total angular momentum (j=1)(j=1). Evaluate the angular momentum operators (jx),(jy),(jx),(jy), and (jz).(jz). 

19.   Discuss indistinguishability principle. 

(4 × 3 = 12 Weightage) 
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