2	1	T	T	E	1	2
L	U	L	J.	3	U	3

(Pages: 2)

Name:	

Reg.No:

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(CBCSS - UG)

CC20U MTS5 B07 - NUMERICAL ANALYSIS

(Mathematics - Core Course) (2020 Admission - Regular)

Time: 2.00 Hours

Maximum: 60 Marks

Credit: 3

Part A (Short answer questions)

Answer all questions. Each question carries 2 marks.

- 1. Use algebraic manipulations to show that the function $g(x)=\left(\frac{3+x}{x^2+2}\right)^{1/2}$ has a fixed point at p precisely when f(p)=0 where $f(x)=x^4+2x^2-x-3$
- 2. Find an approximate root of $f(x) = \cos x x = 0$ using Newton's method by taking $p_0 = \frac{\pi}{4}$.
- 3. Using the numbers $x_0=2, x_1=2.75$ and $x_2=4$, find the second Lagrange interpolating polynomial for $f(x)=\frac{1}{x}$. Use this polynomial to approximate $f(3)=\frac{1}{3}$
- 4. Using Newton's divided difference formula construct an interpolating polynomials of degree three for the data given in the table,

\boldsymbol{x}	-0.1	0.0	0.2	0.3
f(x)	5.30	2.00	3.19	1.00

- 5. Using the forward-difference formula approximate the derivative of $f(x) = e^x 2x^2 + 3x 1$ at $x_0 = 0$ by considering h = 0.2.
- 6. Given $f(x) = xe^x$. By taking h = 0.1 and using midpoint formula find an approximation to f''(2.0) correct to four decimal places. Also determine the actual error occurred in the approximation.
- 7. Write the Trapezoidal rule formula to approximate $\int_a^b f(x) dx$. What is the error term?
- 8. Write the closed Newton-Cotes formula for n = 2. What is its error term?
- 9. Does the function $f(t,y)=1+t^2y$ satisfy a Lipschitz condition on $D=\{(t,y): 0 \le t \le 1; \ -\infty \le y \le \infty\}$?
- 10. Show that the initial value problem $y' = y \cos t$, $0 \le t \le 1$, y(0) = 1 has a unique solution.
- 11. Use midpoint method to approximate y(1) given $y' = te^{3t} 2y$, y(0) = 0.

(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph)

Answer all questions. Each question carries 5 marks.

- 13. Show that $f(x) = x^3 + 4x^2 10 = 0$ has a root in [1, 2]. Use the Bisection method to determine an approximation to the root that is accurate to at least within 10^{-2} .
- 14. Use method of false position to find solution of $x^3 + 3x^2 1 = 0$ for [-3, -2] accurate to within 10^{-3} .
- 15. Using Newton's backward-divided-difference formula evaluate $P_4(2.0)$ corresponding to the data given in the table,

\boldsymbol{x}	1.0	1.3	1.6	1.9	2.2
f(x)	0.7652	0.6201	0.4554	0.2818	0.1104

16. Values for $f(x) = xe^x$ are given in the following table. Use all the applicable three-point formulas to approximate f'(2.0).

x	1.8	1.9	2	2.1	2.2
f(x)	10.8893	12.7032	14.7781	17.149	19.855

Determine the actual error occurred in each case.

- 17. Compare the Trapezoidal rule and Simpson's rule approximations to $\int_0^2 x^2 dx$. Determine the actual error of approximation.
- 18. Use Euler's method to approximate the solution of the initial value problem $y' = e^{t-y}$, $0 \le t \le 1$, y(0) = 1 with h = 0.5. Obtain the actual solution and compare the actual error at each step to the error bound.
- 19. Use modified Euler's method to approximate the solution of the initial value problem $y' = \sin t + e^{-t}$, $0 \le t \le 1$, y(1) = 0, with h = 0.5. Compare the results to the actual values.

(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any one question. The question carries 10 marks.

- 20. Use secant method to find solution of $x \cos x = 0$ for $\left[0, \frac{\pi}{2}\right]$ accurate to within 10^{-4} .
- 21. Use Runge-Kutta method of order four to approximate the solution of the initial value problem $y' = (y/t) (y/t)^2$, $1 \le t \le 2$, y(1) = 1, with h = 0.5.

 $(1 \times 10 = 10 \text{ Marks})$