Reg.No:

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U MTS6 B13 / CC20U MTS6 B13 - DIFFERENTIAL EQUATIONS

(Mathematics - Core Course)

(2019, 2020 Admissions)

Time: 2.5 Hours Maximum: 80 Marks

Credit: 4

Part A (Short answer questions)

Answer all questions. Each question carries 2 marks.

- 1. Solve the initial value problem $\frac{dy}{dt} = -2y + 5$; y(0) = 0
- 2. Determine the order of the given differential equation $(1+y^2)\frac{d^2y}{dt^2} + t\frac{dy}{dt} + y = e^t$ also state whether the equation is linear or nonlinear.
- 3. Solve the initial value problem $\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y-1)}, \ \ y(0) = -1$
- 4. Find an interval in which the initial value problem $ty'+2y=4t^2\;\;;y(1)=2$ has a unique solution.
- 5. Solve the linear differential equation y'' + 7y' + 12y = 0
- 6. Find the Wronskian of $y_1 = \sin t$, $y_2 = \cos t$. Determine whether y_1 and y_2 are linearly independent.
- 7. Find the general solution of 4y'' + 5y' y = 0
- 8. Find the general solution of 16y'' + 24y' + 9y = 0
- 9. What is the radius of convergence of the Taylor series for $(1+x^2)^{-1}$ about x=0?
- 10. Find the Laplace transform of $\sin at$
- 11. Find the inverse Laplace transform of $\frac{b}{(s-a)^2+b^2}$
- 12. Write the expression for $\mathcal{L}(f'(t))$ and $\mathcal{L}(f''t)$
- 13. Find the inverse Laplace transform of $G(s) = \frac{1}{(s+2)^2 + 1}$
- 14. Determine whether the function $f(x) = |x|^3$ is even, odd, or neither.
- 15. Write heat equation and wave equation

Part B (Paragraph questions)

Answer all questions. Each question carries 5 marks.

16. Determine whether the equation (2x+3) + (2y-2)y' = 0 is exact. If it is exact, find the solution.

17. Find an integrating factor of
$$(3x^2y + 2xy + y^3) + (x^2 + y^2)y' = 0$$

- 18. Find the particular solution of $y'' + 2y' + y = 3e^{-t}$
- 19. Use the method of variation of parameters find the general solution of the differential equation $y'' + 4y = 8 \tan t \pi/2 < t < \pi/2$
- 20. Find the inverse Laplace transform of $\frac{2(s-1)e^{-2s}}{s^2-2s+2}$
- 21. Find the Laplace transform of $f(t) = \int_0^t (t-\tau)^2 \cos(2\tau) d\tau$
- 22. Solve the boundary value problem $y'' + y = 0; y(0) = 1, y(\pi) = a$
- 23. Find the Fourier series of $f(x)=x, -1 \leq x < 1; f(x+2)=f(x)$

(Ceiling: 35 Marks)

Part C (Essay questions)

Answer any two questions. Each question carries 10 marks.

- 24. Solve the initial value problem $y' + \frac{1}{4}y = 3 + 2\cos(2t); \ y(0) = 0$
- 25. Find the general solution of $y'' + 2y' = 3 + 4\sin(2t)$
- 26. Using Laplace transform, find the solution of the initial value problem $y'' + \omega^2 y = g(t); \quad y(0) = 0, y'(0) = -1$
- 27. Let $f(x) = \begin{cases} x & -\pi \le x < 0, \\ 0, & 0 \le x < \pi, \end{cases}$ and suppose that $f(x + 2\pi) = f(x)$. Find the Fourier series for f.

 $(2 \times 10 = 20 \text{ Marks})$
