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Part A
Answer any all questions from each unit. Each question carries 1 weightage.

1. Suppose  is equicontinuous at each point of G. Prove that  is equicontinuous over each
compact subset of G.

2. If d is the metric of , show that  for .

3. Show that Conformal equivalence is an equivalence.

4. Define the elementary factor function . Prove that  for large p.

5. Define the gamma function. Show that the residue of the gamma function  at simple pole  is given

by 

6. Let  where  . Prove that for  there is  such that for all z

in S,  whenever 

7. Show that the coefficients  in the Laurent series for  are zeros for 

8. When we can consider  as an analytic continuation of  along a path ?

 (8 × 1 = 8 Weightage)
Part B

Answer any two questions each unit. Each question carries 2 weightage.

UNIT - I

9. Suppose G is open in  . Prove that there is a sequence  of compact subsets of G such that
 satisfying

(i)   int   (ii) and K compact implies  for some n.

10. Show that  is normal iff for every compact set  and  there are functions
 such that for , there is at least one  with sup
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11. Let  is a sequence in  and  such that . Prove that f is analytic and
 for each integer 

UNIT - II

12. Find a factorization for

13. Prove that  for 

14. Prove that  for 

UNIT - III

15. Let G be a region and let  be a sequence of distinct points such that  has no limit points.

For each , let where . Prove that there exist

 whose poles are exactly  and the singular part of f at  is .

16. Let f be an analytic function on a region containing  and suppose that  are the zeros
of f in repeated according to multiplicity. Let , prove that

17. Prove that if f is an entire function of order  then  also has order .

(6 × 2 = 12 Weightage)
Part C

Answer any two questions. Each question carries 5 weightage.
18. (a) Let . Prove that  converges to a nonzero number iff the series 

 converges.
(b) Let . Prove that the series  converges absolutely iff the series  

 converges absolutely.

19.  Let  are metric spaces for each n. Prove that the space  where

 is a metric space. Also if  is in , then

prove that  iff  for each n. If each  is compact then X is compact.

20. (a) State and prove Bohr-Mollerup theorem.
(b) Let  K  be  a  compact  subset of  and let E be a subset of  that meets each component of 

  . If  f  is  analytic  on  an  open  set  containing  K  and   Prove that there is a rational 
 function  whose only poles lie in E and  for all z in K.

21. Let f be an entire function of genus . Prove that for each positive number  there is a number  such
that for 
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(2 × 5 = 10 Weightage)
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