21P405	(Pages: 2)	Name:
		Reg.No:

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P PHY4 C12 - ATOMIC AND MOLECULAR SPECTROSCOPY

(Physics)

(2019 Admission onwards)

Time: 3 Hours Maximum: 30 Weightage

Section A

Answer all questions. Each question carries 1 weightage.

- 1. Write a note on interaction energies of L S coupling and j-j coupling schemes.
- 2. Which of the following molecules will show a microwave rotational spectrum: H₂, HCl, CH₄, CH₃Cl?
- 3. Illustrate mutual exclusion principle with an example.
- 4. What is inverse Raman Effect?
- 5. Discuss Frank Condon principle.
- 6. Outline the principle of NMR spectrum.
- 7. Explain the factors responsible for hyperfine structure in ESR spectra.
- 8. Discuss recoilless emission and absorption of gamma rays.

 $(8 \times 1 = 8 \text{ Weightage})$

Section B

Answer any *two* questions. Each question carries 5 weightage.

- 9. Describe the normal and anomalous Zeeman effect. Explain the Zeeman effect in sodium with a diagram.
- 10. Explain the technique of FTIR spectroscopy. What is its advantage over conventional IR technique?
- 11. What is Deslandre's table? Explain progressions & sequences in electronic spectroscopy of molecules.
- 12. Discuss the principle of Mossbauer spectroscopy. Write notes on isomer shift and magnetic hyperfine interaction in Mossbauer spectroscopy.

 $(2 \times 5 = 10 \text{ Weightage})$

Section C

Answer any *four* questions. Each question carries 3 weightage.

13. Evaluate the different spectroscopic terms arising due to (1) an electron in p orbital and another electron in f orbital and (2) an electron in p orbital and another electron in d orbital in j-j coupling.

- 14. Which of the following molecules have a microwave spectrum? Explain the reason. (a) O_2 (b) HCl (c) IF (d) F_2
- 15. The fundamental band for HCI is centred at 2886 cm^{-1} . Assuming that the internuclear distance is 1.276 A^0 , calculate the wave number of the first two lines of each of the P and R branches of HCI.
- 16. Bond length of H_2 molecule is 0.7417 A^0 . Determine the position of first three rotational Raman lines in the spectrum. Given, mass of H = 1.673 x 10^{-27} Kg.
- 17. The rotational lines of a band system of electronic vibration spectra is given by $\bar{\nu}=(24762+25m-2.1m^2)cm^{-1}$, where m = ± 1 , ± 2 etc. Deduce the values of B', B" and the position of band head.
- 18. An NMR signal for a compound is found to be 180 Hz downward from TMS [(CH₃)₄.Si] peak using a spectrometer operating at 60 MHz. Calculate its chemical shift in ppm.
- 19. A free electron is placed in a magnetic field of strength 1.5 T. Calculate the resonance frequency if "g" = 2.0023.

 $(4 \times 3 = 12 \text{ Weightage})$
