21P410	(Pages: 2)	Name:
		Reg. No

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P PHY4 E17 – ADVANCED CONDENSED MATTER PHYSICS

(Physics)

(2019 Admission onwards)

Time: Three Hours Maximum: 30 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

- 1. What are plasmons?
- 2. How are alloys classified according to the ordering of atoms?
- 3. Which are the various microscopic fracture profiles?
- 4. Write a short note on fatigue of materials.
- 5. State Fick's laws of diffusion.
- 6. Explain the density of states function for quantum wires with respect to energy.
- 7. How does microstructure affect thin film growth process?
- 8. Differentiate between co-sputtering and reactive sputtering.

 $(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any two questions. Each question carries 5 weightage.

- 9. Discuss the vibrational modes of a lattice with two atoms per primitive cell.
- 10. Explain the physics of alloying phenomenon.
- 11. Explain the three dimensional bulk material with its properties in detail.
- 12. Explain the various physical and chemical vapour deposition techniques.

 $(2 \times 5 = 10 \text{ Weightage})$

Part C

Answer any *four* questions. Each question carries 3 weightage.

- 13. Derive the basic Hamiltonian of a solid.
- 14. Obtain an expression for Fermi energy.
- 15. What is the composition in atom percentage of an alloy that contains 33g of copper and 47g of zinc?
- 16. Calculate the activation energy for the diffusion of nickel in iron from the following data:

 $D_1=2.2\times10^{-15}\,\text{m}^2\text{s}^{-1}$ at 1473K.

 $D_2=4.8 \times 10^{-14} \, \text{m}^2 \text{s}^{-1}$ at 1673K.

- 17. Calculate the energy for vacancy formation in silver, given that the equilibrium number of vacancies at 800° c is 3.6×10^{13} cm⁻³. The atomic weight and density at 800° C for silver are 107.9 g/mol and 9.5 gcm⁻³.
- 18. Explain in detail about carbon nanotubes.
- 19. Enumerate the optoelectronic applications of thin films.

 $(4 \times 3 = 12 \text{ Weightage})$
