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Part A
Answer all questions. Each question carries 1 weightage.

1.   Consider the stereographic projection between  and .
For each of the points  and  of  give the corresponding points of the unit sphere S.

2.   Find the fixed points of a dilation and the inversion on 

3.   State and prove symmetry principle.

4.   State and prove Cauchy's estimate.

5.   Let  given by . Evaluate .

6.   Using residue theorem evaluate 

7.   For , let . Prove that  

8.   Hadamard three cycle theorem.

   (8 × 1 = 8 Weightage)
Part B

Answer any two questions each unit. Each question carries 2 weightage.
UNIT - I

9.   For a given power series , let . Prove the following

(a) If , the series converges absolutely.           (b) If , the series diverges.

10.   Let  have radius of convergence . Prove that the function f is infinitely

differentiable on  and furthermore  is given by the series

 for all  and . Also for
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11.   Let  be four distinct points in . Prove that  is a real number iff all four
points lie on a circle.

UNIT - II

12.   Let  be a closed rectifiable curve in . Prove that  is constant for a belonging to a component of
. Also prove that  for a belong to the unbounded component of G.

13.   State and prove the first version of Cauchy's integral formula.

14.   Prove that if G be an open set and  be a differentiable function, then f is analytic on G.

UNIT - III

15.   If f has an isolated singularity at a, prove that  is a removable singularity iff .

16.   State and prove the residue theorem.

17.   Let f be meromorphic in G with zeros  and poles  repeated according to
their multiplicity. If g is analytic in G and  is a closed rectifiable curve in G with  and not passing

through any  or . Prove that 

(6 × 2 = 12 Weightage)
Part C

Answer any two questions. Each question carries 5 weightage.

18.   Let u and v be real valued functions defined on a region G and suppose that u and v have continuous
partial derivatives. Prove that  defined by  is analytic iff u and v satisfy the
Cauchy-Riemann equations.

19.   Let  is of bounded variation and suppose that  is continuous. Prove that there
is a complex number I such that for every  there is a  such that when

 is a partition of  with  then

 for whatever choice of points 

20.   Prove that if  and  are two closed rectifiable curves in G with , then  for every

function f analytic on G.

21.   State and prove all the three versions of maximum modulus principles.

(2 × 5 = 10 Weightage)
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