FOUR-YEAR UNDER GRADUATE

PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B.Sc Chemistry								
Course Title	BASIC INORGANIC AND NUCLEAR CHEMISTRY								
Type of Course	MINOR								
Semester	I								
Academic Level	100-199								
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours				
		per week	per week	per week					
	4	3	-	2	75				
	Concept of atom and	molecule							
Pre-requisites	Constituents of the at	om, Rutherfo	ord's model o	of the atom.					
	Periodic table and classification of elements to different blocks,								
	Basic knowledge of o	qualitative an	d quantitativ	e analysis					
	Titration and use of i	ndicators							
Course Summary	This course is intend	-			•				
	nanochemistry. The s	•		•					
	and the modern quan				~				
	of this course. Differ	• •		-					
	module. General pro	•							
	the periodic table are			•	•				
	chemistry are include								
	base titration, redox		_		=				
	This course also trie								
	application of radioactive isotopes. To master the laboratory skills acid-base								
	titration, and redox titration experiments are incorporated into this course								
	structure.								

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	To Understand the structure of atoms			Instructor-
	and rules regarding the arrangement	U	C	created exams
	of electrons in an atom.			/ Quiz
CO2	To discuss the chemical bonding,			Class test
	theories of chemical bonding and	U	F	/Assignment /
	predict molecular shapes using VSEPR			Quiz
	theory			

CO3	To Comprehend periodic properties,			Class test
	understand laws and the concept of	U	F	/Assignment /
	the modern periodic table, and its			Quiz
	implications			
CO4	To Master the principle of volumetric			Class test
	analysis, understand the separation of	U	С	/Assignment /
	cations in qualitative analysis			Quiz
CO5	To Examine nuclear chemistry, the			Class test
	N/P ratio and the application of	U	F	/Assignment /
	radioactive isotopes			Quiz
CO6	To Perform different titrations and			
	execute open-ended experiments	Ap	P	Lab work
	safely and effectively			

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Detailed Syllabus:

Module	Unit	Content	Hrs	Mark
		Atomic structure and Chemical Bonding	15	34
	1	Bohr atom model, merits and its limitations,		
		Heisenberg uncertainty principle, Louis de Broglie's matter waves – dual nature.	2	
	2	Schrödinger wave equation (Mention the equation and		
		the terms in it), - Concept of orbitals, comparison of orbit and orbital.	2	
	3	Quantum numbers and their significance	1	
I	4	Pauli's Exclusion principle - Hund's rule of maximum		
		multiplicity - Aufbau principle – Electronic configuration of atoms.	2	
	5	Chemical Bonding: Introduction – Type of bonds.		
		Ionic bond, Covalent bond, Coordinate bond, and	2	
		hydrogen bond (Intermolecular and intramolecular hydrogen bond with examples).		
	6	VSEPR theory: Shapes of BeCl ₂ , BF ₃ , CH ₄ , NH ₃ , H ₂ O,	2	
		PCl ₅ , SF ₄ , ClF ₃ , XeF ₂ , SF ₆ , IF ₅ , XeF ₄ , IF ₇ and XeF ₆ . NH ₄ +,		
		SO ₄ ² -		
	7	Valence Bond theory - Hybridisation involving s, p	2	
		and d orbitals: SP (acetylene), SP ² (ethylene), SP ³ (CH ₄), SP ³ d (PCl ₅), SP ³ d ² (SF ₆)	2	
	8	Molecular Orbital theory: LCAO – Electronic		
		configuration of H ₂ , B ₂ , C ₂ , N ₂ , O ₂ and CO – Calculation	2	

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

		of bond order and its applications.(Bond length and		
		bond strength), Comparison of VB and MO theories		
		Periodic Properties	5	10
	9	Name and symbol of elements, Law of triads, octaves, X-ray studies of Henrry Mosley, Mosleys periodic law - Modern periodic law - Long form periodic table.	2	
II	10	Periodicity in properties: Atomic and ionic radii, Ionization enthalpy - Electron affinity (electron gain enthalpy) – Electronegativity, valency, Oxidation number (Representative element), metallic and non-metallic character, inert pair effect,	3	
		Analytical Chemistry	15	34
	11	Atomic mass - Molecular mass - Mole concept - Molar volume - Oxidation and reduction - Equivalent mass.	2	
	12	Methods of expressing concentration: Molality, molarity, normality, ppm, and mole fraction.	2	
	13	Dilution formula, Theory of volumetric analysis – Acidbase, redox, and complexometric titrations :	3	
III	14	acid-base, redox, and complexometric indicators. Double burette method of titration: Principle and advantages.	2	
	15	Principles in the separation of cations in qualitative analysis	2	
	16	Common ion effect and solubility product and its applications in qualitative analysis –	2	
	17	Microanalysis and its advantages. Accuracy & Precision (mention only).	2	
		Nuclear Chemistry	10	20
	18	Nuclear stability – N/P ratio – Packing fraction – Mass defect – Binding energy	2	
	19	Nuclear fission - Atom bomb - Nuclear fusion - Hydrogen bomb.	1	
IV	20	Nuclear forces - Exchange theory and liquid drop model - Nuclear reactors. Decay series – group displacement law	2	
	21	Isotopes, Separation of isotopes by gaseous diffusion method and thermal diffusion method	2	
	22	Application of radioactive isotopes – ¹⁴ C dating – Rock dating – Isotopes as tracers – Study of reaction mechanism (ester hydrolysis) – Radio diagnosis and radiotherapy	3	
		Basic Inorganic Chemistry Practical:	30	
		Acid-Base titrations and Redox titrations		
		General Instructions		

		D '1' 1 / '11 /1 1D	1	
		For weighing electronic balance must be used. For		
		titrations, double burette titration method should be used.		
		Standard solution must be prepared by the student. Use		
		safety coat, gloves, shoes and goggles in the laboratory.		
		A minimum of 7 experiments must be done. Out of the		
		seven experiments, one is to be open-ended which can be		
		selected by the teacher		
		Importance of lab safety – Burns, Eye accidents, Cuts,		
		gas poisoning, Electric shocks, Treatment of fires,		
		Precautions and preventive measures.		
		Weighing using electronic balance, Preparation of		
		standard solutions.		
		Neutralization Titrations		
		1. Strong acid – strong base.		
	I	2. Strong acid – weak base.		
	_	3. Weak acid – strong base.		
		Redox Titrations - Permanganometry:		
\mathbf{v}		4. Estimation of oxalic acid.		
,	II	5. Estimation of Fe ₂₊ /FeSO ₄ .7H ₂ O/Mohr's salt		
		Dodow Tituotiona Dichnomotory		
		Redox Titrations - Dichrometry		
		6. Estimation of Fe ₂₊ /FeSO ₄ .7H ₂ O/Mohr's salt		
		using internal indicator.		
		7. Estimation of Fe ₂₊ /FeSO ₄ .7H ₂ O/Mohr's salt using external indicator.		
		Redox Titrations - Iodimetry and Iodometry: 8. Estimation of iodine.		
		9. Estimation of copper		
		Open-ended experiments - Suggestions		
		Iodometry: Estimation of chromium.		
	III	Determination of acetic acid content in vinegar by		
		titration with NaOH.		
		Determination of alkali content in antacid tablets by		
		titration with HCl.		
		Determination of available chlorine in bleaching powder.		

References

- 1. C. N. R. Rao, *Understanding Chemistry*, Universities Press India Ltd., Hyderabad, 1999.
- 2. Manas Chanda, *Atomic Structure and Chemical Bonding*, 4th Edn., Tata McGraw Hill Publishing Company, Noida, 2007.
- 3. R. Puri, L. R. Sharma K. C. Kalia, *Principles of Inorganic Chemistry*, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- 4. Satya Prakash, *Advanced Inorganic Chemistry*, Vol. 1, 5th Edn., S. Chand and Sons, New Delhi, 2012.
- 5. W. U. Malik, G. D. Tuli, R. D. Madan, Selected Topics in Inorganic Chemistry, S. Chand

and Co., New Delhi, 2010.

- 6. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn., Oxford University Press, New Delhi, 2008.
- 7. J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi, *Inorganic Chemistry*, 5th Edn., Pearson, 2009.
- 8. H. J. Arnikar, Essentials of Nuclear Chemistry, 4th Edn., New Age International (P) Ltd.,
- 9. New Delhi, 1995. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 10. G. Svehla, *Vogel's Qualitative Inorganic Analysis*, 7th Edn., Prentice Hall, New Delhi, 1996.

Mapping of COs with PSOs and POs

- In American													
	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	O1	O2	O3	O4	O5	O6							
CO	2				2		1				1		
1													
CO	2				2		1				1		
2													
CO	1				2		1				1		
3													
CO	1		1		2		1				1		
4													
CO	1				2		1				1		
5													
CO			2		1		1		1		2		
6													

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	✓	✓		✓
CO2	✓	✓		✓
CO3	✓	✓		✓
CO4	✓	✓		✓
CO5	✓	✓		✓
CO6		✓	✓	