Programme	B. Sc. Mathematics Honours				
Course Title	MATRIX THEORY				
Course Code	MAT1MN105				
Type of Course	Minor				
Semester	Ι				
Academic Level	100 – 199				
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours	
		per week	per week		
	4	4	-	60	
Pre-requisites	Higher Secondary Algebra				
Course Summary	This course provides a comprehensive introduction to linear algebra,				
	focusing on systems of linear equations, matrix algebra, determinants, and				
	Euclidean vector spaces. Through a blend of theoretical concepts and				
	practical applications, students will develop a strong foundation in linear				
	algebra techniques and their uses in various fields.				

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand the fundamental	U	С	Internal
	operations and concepts of systems of			Exam/Assignme
	linear equations, including Gaussian			nt/ Seminar/
	elimination and elementary row			Viva / End Sem
	operations, leading to an			Exam
	understanding of matrix algebra			
CO2	Apply the properties of determinants	Ap	P	Internal Exam/
	to evaluate them using cofactor			Assignment/
	expansions and row reduction			Seminar/ Viva/
	techniques, and comprehend the			End Sem Exam
	relationships between matrices and			
	determinants.			
CO3	Explore the geometry and properties	An	С	Internal Exam/
	of Euclidean vector spaces, including			Assignment/
	norms, dot products, distances,			Seminar/ Viva/
	orthogonality, and the cross product.			End Sem Exam
* D	1 (D) II 1 . 1(II) A 1 (A)	A 1 (A)	E 1 (E)	G (G) //

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

Text : Howard Anton and Chriss Rorres, Elementary Linear Algebra (11/e), Applications version, Wiley

Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)	
I		System Of Linear Equations			
	1	Section 1.1: -Introduction to systems of linear equations – up to and			
		including Example 5			
	2	Section 1.1: - Rest of the section.			
	3	1.2 :- Gaussian Elimination – up to Example 5			
	4	Section 1.2; - From Example 5 onwards.			
	5	Section 1.3: - Matrices and Matrix Operations – up to and including			
	6	Example 7. Section 1.3; - Rest of the section.			
II	0	Matrix Algebra	12		
11	7	Section 1.4: - Inverses; Algebraic Properties of Matrices - up to and	12		
	'	including Example 6.			
	8	Section 1.4; - Properties of inverses onwards – up to and including			
		Example 12.			
	9	Section 1.4: - Rest of the section.			
	10	Section 1.5; - Elementary matrices and a method for finding inverse			
		(Proof of Theorem 1.5.3 is optional)			
	11	Section 1.6: - More on Linear systems and Invertible Matrices			
		(Proofs of all the theorems are optional)			
	12	Section 1.7; - Diagonal, Triangular and Symmetric Matrices (Proof			
***		of theorem 1.7.1 is optional)	10		
Ш	12	Determinants	12		
	13	Section 2.1: Determinants by Cofactor expansions			
	15	Section 2.2; - Evaluating determinants by row reduction Section 2.3: - Properties of determinants; Cramer's Rule – up to and			
	13	including Theorem 3.2.5 (proofs of all the results are optional).			
	16	Section 2.3;- up to and including Example 7.			
	17	Section 2.3; rest of the section.(proofs of all the results are			
	1	optional)			
IV		Euclidean Vector Spaces	12		
	18	Section 3.1:- Vectors in 2-space, 3-space and n-space			
	19	Section 3.2:- Norm, dot product and distance in R ⁿ (proofs of all the			
		results are optional).			
	20	Section 3.3: - Orthogonality (proofs of all the results are optional).			
	21	Section 3.4:-The geometry of linear systems.			
	22	Section 3.5:-Cross product (Proof of Theorem 3.5.4 is optional)	4.5		
V	7.6	Open Ended Module	12		
		x Transformations, Combinatorial approach to determinants, Rank of Mareference 1) Orthogonal Matrices (from reference 1)	atrix		
	1				

References:

- 1. Advanced Engineering Mathematics, 6th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2.
- 2. Advanced Engineering Mathematics, Erwin Kreyzsig, 10th Edition, Wiley India.
- 3. Linear Algebra and its Applications: 3rd Edition, David C. Lay, Pearson Publications

Note: 1) Optional topics are exempted for end semester examination. (2) Proofs of all the results are exempted for external exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	2	2	3	1	2
CO 2	3	2	3	1	2	2	3	1	2
CO 3	2	1	3	1	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar Viva		End Semester Examinations
CO 1	√	✓	>	>	✓
CO 2	√	√	√	√	✓
CO 3	√	√	√	√	✓