Programme	B.Sc Mathematics Honours							
Course Code	MAT1MN104							
Course Title	MATHEMATICAL LOGIC, SET THEORY AND COMBINATORICS							
Type of Course	Minor							
Semester	Ι							
Academic Level	100 - 199							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Higher Secondary Mathematics.							
Course	This course explores mathematical logic, set theory, and combinatorics,							
Summary	covering fundamental ideas like propositions, logical equivalences, and							
	quantifiers. It introduces set theory concepts such as sets, operations with sets,							
	and cardinality	and cardinality. Additionally, it delves into functions and matrices, along with						
	topics like 1	permutations, combinations	s, and discre	te probability in				
	combinatorics.							

Course Outcomes (CO):

CO Statement	Cognitive	Knowledge	Evaluation Tools used
	Level*	Category#	
Analyse propositional logic and	An	P	Internal
equivalences			Exam/Assignment/
			Seminar/ Viva / End
			Sem Exam
Apply set theory and operations	Ap	С	Internal
			Exam/Assignment/
			Seminar/ Viva / End
			Sem Exam
Implement functions, matrices,	Ap	P	Internal
and combinatorics	_		Exam/Assignment/
			Seminar/ Viva / End
			Sem Exam
	Analyse propositional logic and equivalences Apply set theory and operations Implement functions, matrices,	Analyse propositional logic and equivalences Apply set theory and operations Ap Implement functions, matrices, Ap	Analyse propositional logic and equivalences Apply set theory and operations Apply set functions, matrices, Ap An P Category# An P

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

Text: Discrete Mathematics with Applications, (1/e), Thomas Koshy, Academic Press (2003), ISBN: 978-0124211803.

Module	Unit	Content	Hrs	Ext.
			(48	Marks
			+12)	(70)
I		Mathematical Logic	T12)	
_	1	1.1 Propositions: Conjunction, Disjunction.		
	2	1.1 Propositions: Converse, Inverse and Contrapositive.		
	3	1.1 Propositions: Biconditional Statement, Order of Precedence, Tautology, Contradiction and Contingency (Switching network and Example 1.16 are optional).		
	4	1.2 Logical Equivalences (Equivalent Switching Networks, Example 1.23, Fuzzy Logic and Fuzzy Decisions are optional)	15	Min. 15
	5	1.3 Quantifiers (Example 1.28, De Morgan's Laws and example 1.29 are optional)		
	6	1.4 Arguments: Valid and Invalid arguments, (Example 1.33 is optional)		
II		Set Theory		
	7	2.1 The Concept of a Set - up to and including example 2.7 (Example 2.6 is optional).		
	8	2.1 The Concept of a Set - finite and infinite sets (Topics from the Hilbert Hotel paradoxes onwards are optional).		
	9	2.2 Operations with Sets – up to and including example 2.21.	12	Min. 15
	10	2.2 Operations with Sets – Cartesian product (Fuzzy sets, Fuzzy subsets and operations on fuzzy sets are optional).		
	11	2.4 The Cardinality of a Set (Theorem 2.2 and Algorithm subsets are optional).		
III	-	Functions and Matrices		

	12	3.1. The Concept of Functions - up to and including example 3.2	10	Min.
	13	3.1. The Concept of Functions – Piecewise definition, sum and product (Example 3.7 is optional).		15
	3.2 Special Functions – up to and including example 3.13 (Proof of Theorems 3.1 and 3.2 are optional).			
	3.2 Special Functions- Characteristic function, Mod and Div functions (Theorem 3.3, Code dealing and The two Queens Puzzle are optional).			
	16	3.7 Matrices (Proof of theorem 3.12, algorithm product are optional).		
IV		Combinatorics and Discrete Probability		
	17	6.1 The Fundamental Counting Principles (Example 6.7 is optional)		
	6.2 Permutations - up to and including example 6.13 (Proof of theorem 6.4 is optional)			
	19 6.2 Permutations - Cyclic permutations (Theorem 6.7 and Fibonacci numbers revisited are optional)		11	Min. 15
	20 6.4 Combinations (Proof of theorem 6.10, example 6.22, theorem 6.12 and example 6.26 are optional)			
	6.8 Discrete Probability- up to and including example 6.49 (Examples 6.45 and 6.47 are optional)			
	22	6.8 Discrete Probability- Mutually exclusive events (Proof of theorem 6.20 is optional)		
V			12	
		Open Ended		
	 Basic calculus concepts such as limits, continuity, differentiation and integration. Relations and Digraphs, Conditional Probability, Multiplication theorem of Probability, Dependent and Independent Events, Probability Distributions, Correlation and Regression, Bisection Method, Regula-Falsie Method, Gauss-Jordan Method. 			

References:

- 1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007).
- 2. Discrete Mathematics with Applications(4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011).
- 3. Discrete Mathematics, Gary Chartrand, Ping Zhang, Waveland Press (2011).

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	1	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	>	>	√
CO 2	✓	✓	√	√	✓
CO 3	✓	√	√	√	✓