| Programme | B.Sc Mathematics Honours | | | | | | | | |----------------|--|--|---------------|-------------------|--|--|--|--| | Course Code | MAT1MN104 | | | | | | | | | Course Title | MATHEMATICAL LOGIC, SET THEORY AND COMBINATORICS | | | | | | | | | Type of Course | Minor | | | | | | | | | Semester | Ι | | | | | | | | | Academic Level | 100 - 199 | | | | | | | | | Course Details | Credit | Lecture/Tutorial | Practical | Total Hours | | | | | | | | per week | per week | | | | | | | | 4 | 4 | - | 60 | | | | | | Pre-requisites | Higher Secondary Mathematics. | | | | | | | | | Course | This course explores mathematical logic, set theory, and combinatorics, | | | | | | | | | Summary | covering fundamental ideas like propositions, logical equivalences, and | | | | | | | | | | quantifiers. It introduces set theory concepts such as sets, operations with sets, | | | | | | | | | | and cardinality | and cardinality. Additionally, it delves into functions and matrices, along with | | | | | | | | | topics like 1 | permutations, combinations | s, and discre | te probability in | | | | | | | combinatorics. | | | | | | | | ## **Course Outcomes (CO):** | CO Statement | Cognitive | Knowledge | Evaluation Tools used | |---------------------------------|---|--|---| | | Level* | Category# | | | Analyse propositional logic and | An | P | Internal | | equivalences | | | Exam/Assignment/ | | | | | Seminar/ Viva / End | | | | | Sem Exam | | Apply set theory and operations | Ap | С | Internal | | | | | Exam/Assignment/ | | | | | Seminar/ Viva / End | | | | | Sem Exam | | Implement functions, matrices, | Ap | P | Internal | | and combinatorics | _ | | Exam/Assignment/ | | | | | Seminar/ Viva / End | | | | | Sem Exam | | | Analyse propositional logic and equivalences Apply set theory and operations Implement functions, matrices, | Analyse propositional logic and equivalences Apply set theory and operations Ap Implement functions, matrices, Ap | Analyse propositional logic and equivalences Apply set theory and operations Apply set functions, matrices, Ap An P Category# An P | ^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) # **Detailed Syllabus:** **Text:** Discrete Mathematics with Applications, (1/e), Thomas Koshy, Academic Press (2003), ISBN: 978-0124211803. | Module | Unit | Content | Hrs | Ext. | |--------|------|---|------|------------| | | | | (48 | Marks | | | | | +12) | (70) | | I | | Mathematical Logic | T12) | | | _ | 1 | 1.1 Propositions: Conjunction, Disjunction. | | | | | 2 | 1.1 Propositions: Converse, Inverse and Contrapositive. | | | | | 3 | 1.1 Propositions: Biconditional Statement, Order of Precedence, Tautology, Contradiction and Contingency (Switching network and Example 1.16 are optional). | | | | | 4 | 1.2 Logical Equivalences (Equivalent Switching Networks, Example 1.23, Fuzzy Logic and Fuzzy Decisions are optional) | 15 | Min.
15 | | | 5 | 1.3 Quantifiers (Example 1.28, De Morgan's Laws and example 1.29 are optional) | | | | | 6 | 1.4 Arguments: Valid and Invalid arguments, (Example 1.33 is optional) | | | | II | | Set Theory | | | | | 7 | 2.1 The Concept of a Set - up to and including example 2.7 (Example 2.6 is optional). | | | | | 8 | 2.1 The Concept of a Set - finite and infinite sets (Topics from the Hilbert Hotel paradoxes onwards are optional). | | | | | 9 | 2.2 Operations with Sets – up to and including example 2.21. | 12 | Min.
15 | | | 10 | 2.2 Operations with Sets – Cartesian product (Fuzzy sets, Fuzzy subsets and operations on fuzzy sets are optional). | | | | | 11 | 2.4 The Cardinality of a Set (Theorem 2.2 and Algorithm subsets are optional). | | | | III | - | Functions and Matrices | | | | | 12 | 3.1. The Concept of Functions - up to and including example 3.2 | 10 | Min. | |----|--|--|----|------------| | | 13 | 3.1. The Concept of Functions – Piecewise definition, sum and product (Example 3.7 is optional). | | 15 | | | 3.2 Special Functions – up to and including example 3.13 (Proof of Theorems 3.1 and 3.2 are optional). | | | | | | 3.2 Special Functions- Characteristic function, Mod and Div functions (Theorem 3.3, Code dealing and The two Queens Puzzle are optional). | | | | | | 16 | 3.7 Matrices (Proof of theorem 3.12, algorithm product are optional). | | | | IV | | Combinatorics and Discrete Probability | | | | | 17 | 6.1 The Fundamental Counting Principles (Example 6.7 is optional) | | | | | 6.2 Permutations - up to and including example 6.13 (Proof of theorem 6.4 is optional) | | | | | | 19 6.2 Permutations - Cyclic permutations (Theorem 6.7 and Fibonacci numbers revisited are optional) | | 11 | Min.
15 | | | 20 6.4 Combinations (Proof of theorem 6.10, example 6.22, theorem 6.12 and example 6.26 are optional) | | | | | | 6.8 Discrete Probability- up to and including example 6.49 (Examples 6.45 and 6.47 are optional) | | | | | | 22 | 6.8 Discrete Probability- Mutually exclusive events (Proof of theorem 6.20 is optional) | | | | V | | | 12 | | | | | Open Ended | | | | | Basic calculus concepts such as limits, continuity, differentiation and
integration. Relations and Digraphs, Conditional Probability, Multiplication
theorem of Probability, Dependent and Independent Events, Probability
Distributions, Correlation and Regression, Bisection Method, Regula-Falsie
Method, Gauss-Jordan Method. | | | | #### **References:** - 1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007). - 2. Discrete Mathematics with Applications(4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011). - 3. Discrete Mathematics, Gary Chartrand, Ping Zhang, Waveland Press (2011). Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam. #### Mapping of COs with PSOs and POs: | | PSO5 | PSO6 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | |------|------|------|-----|-----|-----|-----|-----|-----|-----| | CO 1 | 3 | 2 | 3 | 1 | 3 | 2 | 3 | 1 | 2 | | CO 2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | 1 | 2 | | CO 3 | 2 | 1 | 3 | 2 | 3 | 2 | 3 | 1 | 2 | ### **Correlation Levels:** | Level | Correlation | |-------|--------------------| | - | Nil | | 1 | Slightly / Low | | 2 | Moderate / Medium | | 3 | Substantial / High | #### **Assessment Rubrics:** - Assignment/ Seminar - Internal Exam - Viva - Final Exam (70%) #### **Mapping of COs to Assessment Rubrics:** | | Internal Exam | Assignment | Seminar | Viva | End Semester Examinations | |------|---------------|------------|-------------|----------|---------------------------| | CO 1 | √ | ✓ | > | > | √ | | CO 2 | ✓ | ✓ | √ | √ | ✓ | | CO 3 | ✓ | √ | √ | √ | ✓ |