FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B.Sc Chemistry							
Course Title	BASIC INORGANIC AND NANO CHEMISTRY							
Type of Course	MINOR							
Semester	I							
Academic Level	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours			
		per week	per week	per week				
	4	3	-	2	75			
	Concept of atom and	molecule						
Pre-requisites	Constituents of the at	om, Rutherfo	ord's model o	of the atom.				
	Periodic table and cla	assification o	f elements to	different block	ks,			
	Basic knowledge of o	qualitative an	d quantitative	e analysis				
	Titration and use of i	ndicators						
Course Summary	This course is intended	ed to provide	basic knowl	edge in inorga	anic chemistry and			
	nanochemistry. The s	tudent gets a	n understandi	ng of the Bohr	model of the atom			
	and the modern quant	um mechani	cal model of t	the atom through	gh the first module			
	of this course. Differ	ent types of c	themical bond	ding are also ii	ncluded in the first			
	module. General pro	perties of the	e atom and th	e variation of	these properties in			
	the periodic table are	also discusse	ed in this cou	rse. Basic princ	ciples of analytical			
	chemistry are include	ed in the thir	d module of	this course wh	nich includes acid-			
	base titration, redox titration, complexometric titration, and mixture analysis.							
	This course also tries to explore the basic principles and importance of							
	nanochemistry. To n		•					
	titration experiments	are incorpora	ated into this	course structu	re.			

Course Outcomes (CO):

CO	CO Statement	Cognitiv	Knowledge	Evaluation
		e Level*	Category#	Tools used
CO1	To Understand the structure of atoms			Instructor-
	and rules regarding the arrangement	U	С	created exams
	of electrons in an atom.			/ Quiz
				/Assignment
CO2	To discuss the chemical bonding,			Instructor-
	theories of chemical bonding and	U	F	created exams
	predict molecular shapes using			/ Quiz
	VSEPR theory			/Assignment

CO3	To Comprehend periodic properties,			Instructor-
	understand laws and the concept of	U	F	created exams
	the modern periodic table, and its			/ Quiz
	implications			/Assignment
CO4	To Master the principle of volumetric			Instructor-
	analysis, understand the separation	U	C	created exams
	of cations in qualitative analysis			/ Quiz
				/Assignment
CO5	To understand the basics of Nano			Instructor-
	chemistry & to describe the synthesis	U	F	created exams
	of nanomaterials, carbon nanotubes,			/ Quiz
	and their applications,			/Assignment
CO6	To Perform different titrations and			Lab work
	execute open-ended experiments	Ap	P	
	safely and effectively			

^{* -} Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C)

Detailed Syllabus:

Module	Unit	Content	Hrs	Mark
		Atomic structure and Chemical Bonding	15	34
	1	Bohr atom model, merits and its limitations, Heisenberg uncertainty principle, Louis de Broglie's matter waves – dual nature.	2	
	2	Schrödinger wave equation (Mention the equation and the terms in it), - Concept of orbitals, comparison of orbit and orbital.	2	
I	3	Quantum numbers and their significance	1	
1	4	Pauli's Exclusion principle - Hund's rule of maximum multiplicity - Aufbau principle - Electronic configuration of atoms.	2	
	5	Chemical Bonding: Introduction – Type of bonds. Ionic bond, Covalent bond, Coordinate bond, and hydrogen bond (Intermolecular and intramolecular hydrogen bond with examples).	2	
	6	VSEPR theory: Shapes of BeCl ₂ , BF ₃ , CH ₄ , NH ₃ , H ₂ O, PCl ₅ , SF ₄ , ClF ₃ , XeF ₂ , SF ₆ , IF ₅ , XeF ₄ , IF ₇ and XeF ₆ . NH ₄ +, SO ₄ ²⁻	2	
	7	Valence Bond theory - Hybridisation involving s, p and d orbitals: SP (acetylene), SP ² (ethylene), SP ³ (CH ₄), SP ³ d (PCl ₅), SP ³ d ² (SF ₆)	2	

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)
Metacognitive Knowledge (M)

	8	Molecular Orbital theory: LCAO – Electronic configuration of H ₂ , B ₂ , C ₂ , N ₂ , O ₂ and CO – Calculation of bond order and its applications.(Bond length and bond strength), Comparison of VB and MO theories	2	
		Periodic Properties	5	10
	9	Name and symbol of elements, Law of triads, octaves, X-ray studies of Henry Mosley, Moseley's periodic law - Modern periodic law – Long form periodic table.	2	10
II	10	Periodicity in properties: Atomic and ionic radii, Ionization enthalpy - Electron affinity (electron gain enthalpy) - Electronegativity, valency, Oxidation number (Representative element), metallic and non-metallic character, inert pair effect,	3	
		Analytical Chemistry	15	34
	11	Atomic mass - Molecular mass - Mole concept - Molar volume - Oxidation and reduction - Equivalent mass.	2	
	12	Methods of expressing concentration: Molality, molarity, normality, ppm, and mole fraction.	2	
	13	Dilution formula, Theory of volumetric analysis – Acid-base, redox, and complexometric titrations :	3	
III	14	acid-base, redox, and complexometric indicators. Double burette method of titration: Principle and advantages.	2	
	15	Principles in the separation of cations in qualitative analysis	2	
	16	Common ion effect and solubility product and its applications in qualitative analysis	2	
	17	Microanalysis and its advantages. Accuracy & Precision (mention only).	2	
		Nano Chemistry	10	20
IV	18	Introduction, Definition of nanomaterials and nanotechnology –Classification of nanomaterials based on dimension with examples for each 0D, 1D, and 2D	2	
Σ,	19	Synthesis of nanomaterials: top-down processes and Bottom–up processes	2	
	20	Carbon nanotubes, Types of Carbon nanotubes – SWCNT and MWCNT, Synthesis of Carbon nanotubes – electric arc discharge, laser ablation, and chemical vapor deposition.	3	

	21	Important properties of carbon nanotubes and	1	
		applications of carbon nanotubes.		
	22	Fullerenes, graphene - (basic concept only, no	2	
		classification is required) Applications of		
		nanomaterials.		
		Basic Inorganic Chemistry Practical:	30	
		Acid-Base titrations and Redox titrations		
		General Instructions		
		For weighing electronic balance must be used. For		
		titrations, double burette titration method should be		
		used. Standard solution must be prepared by the		
		student. Use a safety coat, gloves, shoes and goggles in		
		the laboratory. A minimum of 7 experiments must be		
		done. Out of the seven experiments, one is to be open-		
		ended which can be selected by the teacher		
		Importance of lab safety – Burns, Eye accidents, Cuts,		
		gas poisoning, Electric shocks, Treatment of fires,		
		Precautions and preventive measures.		
		Weighing using electronic balance, Preparation of		
		standard solutions.		
		Neutralization Titrations		
	I	1. Strong acid – strong base.		
		2. Strong acid – weak base.3. Weak acid – strong base.		
		3. Weak acid – strong base.		
		Redox Titrations - Permanganometry:		
	II	4. Estimation of oxalic acid.		
		5. Estimation of Fe ₂₊ /FeSO ₄ .7H ₂ O/Mohr's salt		
		Dodow Tituotiona Dichmomotory		
		Redox Titrations - Dichrometry 6. Estimation of Fe ₂₊ /Fe _S O ₄ .7H ₂ O/Mohr's salt		
		using internal indicator.		
		7. Estimation of Fe ₂₊ /FeSO ₄ .7H ₂ O/Mohr's salt		
		using external indicator.		
		Redox Titrations - Iodimetry and Iodometry:		
		8. Estimation of iodine.		
\mathbf{V}		9. Estimation of copper		
		Open-ended experiments - Suggestions		
		Iodometry: Estimation of chromium.		
	III	Determination of acetic acid content in vinegar by		
		titration with NaOH.		
		Determination of alkali content in antacid tablets by		
		titration with HCl.		
		Determination of available chlorine in bleaching		
		powder.		

References

- 1. C. N. R. Rao, *Understanding Chemistry*, Universities Press India Ltd., Hyderabad, 1999.
- 2. Manas Chanda, *Atomic Structure and Chemical Bonding*, 4th Edn., Tata McGraw Hill Publishing Company, Noida, 2007.
- 3. R. Puri, L. R. Sharma K. C. Kalia, *Principles of Inorganic Chemistry*, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- 4. Satya Prakash, *Advanced Inorganic Chemistry*, Vol. 1, 5th Edn., S. Chand and Sons, New Delhi, 2012.
- 5. W. U. Malik, G. D. Tuli, R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand and Co., New Delhi, 2010.
- 6. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn., Oxford University Press, New Delhi, 2008.
- 7. M. A. Shah, Tokeer Ahmad, *Principles of Nanoscience and Nanotechnology*, Narosa Publishing House, New Delhi, 2010.
- 8. T. Pradeep, *A Textbook of Nanoscience and Nanotechnology*, McGrawhill, New Delhi, 2012.
- 9. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 10. G. Svehla, *Vogel's Qualitative Inorganic Analysis*, 7th Edn., Prentice Hall, New Delhi, 1996.

Mapping of COs with PSOs and POs

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	01	O2	O3	O4	O5	O6							
CO	2				2		1				1		
1													
CO	2				2		1				1		
2													
CO	1				2		1				1		
3													
CO	1		1		2		1				1		
4													
CO	1				2		1				1		
5													
CO			2		1		1		1		2		
6													

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	✓	✓		✓
CO2	√	√		✓
CO3	✓	✓		✓
CO4	√	√		✓
CO5	√	√		✓
CO6	√	√	√	