Study of Low Frequency Surface Wave Attenuation Using Acoustic Metamaterials

Submitted by ABHIJITH C PREEJ Reg No: CCAWMPH016

Department of Physics Christ College (Autonomous), Irinjalakuda

CALICUT UNIVERSITY APRIL 2024

In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN PHYSICS

SIMON K. AHAI shyama. I 24

CERTIFICATE

This is to certify that the project report entitled "Study of Low Frequency Surface Wave Attenuation Using Acoustic Metamaterials" is a bona fide record of the work carried out by Abhijith C Preej (Reg No. CCAWMPH016) under my supervision in the Department of Physics, Christ College (Autonomous) Irinjalakuda, in partial fulfilment of the requirement for the award of degree of Master of Science in Physics of Calicut University.

Prof. Joseph V P Professor Department of Physics Christ College (Autonomous) Irinjalakuda

upervisor Co-

Mrs. Simmy Jose Asst. Professor Department of Physics Christ College (Autonomous) Irinjalakuda

DECLARATION

I, Abhijith C Preej, hereby declare that the work presented in this report entitled, "Study of Low Frequency Surface Wave Attenuation Using Acoustic Metamaterials" is based on the original work done by me under the guidance of Prof. Joseph V P, Professor, Department of Physics, Christ College (Autonomous), Irinjalakuda and has not included in any other thesis submitted previously for the award of any other degree

Date: April 4, 2024

Abhijith C Preej Reg No. CCAWMPH016

ACKNOWLEDGEMENT

This thesis stands as a testament to the support and guidance of numerous individuals without whom this achievement wouldn't have been possible. I extend my heartfelt appreciation to Prof. Joseph V P for their invaluable mentor-ship, insightful feedback, and unwavering support throughout this research journey.

I am grateful to Dr. Ajith R. of Department of Physics (Aided), Christ College (Autonomous) for the inspiration, and guidance they provided, which were instrumental in shaping this work.

Special thanks to Mrs. Simmy Jose, Mrs. Anju Sebastian, Mrs Anjali Joby and Mrs. Aswathi P. V., Assistant Professor, Dept of Physics, Christ College (Autonomous), Irinjalakuda and Pranav George, Research scholar, School of Pure and Applied Physics, Mahatma Gandhi University. They have been really helpful in various phases of project completion and have provided me with great suggestions and advice whenever needed.

I am extremely grateful to Dr. Muhammad, Lecturer/Assistant Professor, University of Galway, Ireland, for extending their valuable time and effort to help make this project into a fruitful one.

Lastly, my sincere thanks to the participants and individuals who generously contributed their time and expertise, forming the bedrock of this study. Your collective support has been the cornerstone of this thesis.

Date: April 4, 2024

Abhijith C Preej Reg No. CCAWMPH016

ABSTRACT

Metamaterials are artificially fabricated materials in nano-scale or micro-scale that have unusual electromagnetic properties, that are not found in nature, extending from electromagnetic to acoustic. The emergence of seismic metamaterials becomes of paramount interest as we consider the potential of protection and safety this can offer in the field of civil engineering and seismology.

This master's project investigates the design of structures to create lowfrequency bandgaps on soil substrates for vibration and noise control. Through analyzing various structural samples, key insights are gained into bandgap formation highlighting the potential of structurally complex shapes for practical applications. Depth within the soil significantly influences bandgap characteristics, while optimizing the structure-soil interaction is crucial for effective low-frequency bandgap formation as the material properties of the soil substrate is shifted with further penetration of the structure into the soil.

This project dissertation is divided into five chapters. The first chapter is a short introduction to metamaterials, and acoustic metamaterials. A concise introduction to the origin of negative parameters in acoustic metamaterials is done in the second chapter. The third chapter deals with the theoretical aspects of seismic metamaterials which include local resonance properties as well as dispersion relation, and methods of numerical simulations and parameters for each sample tested is included. Fourth chapter contains the simulation data, resonant bandstructures, results and discussions. Finally, the fifth chapter contains the conclusions derived.

Contents

Intro	oductio	on	
Histo	ory of M	Ietamaterials	1
Lite	ratura		3
DICC	iature		6
2.1	Acoust	ic Metamaterials	6
	2.1.1	Newton's Second Law	9
	2.1.2	Continuity Equation	10
	2.1.3	The Wave Equation	11
2.2	Negati	ive Parameters in Acoustic Metamaterials	12
	2.2.1	Effective Density: Hidden Forces	12
	2.2.2	Effective Moduli: Hidden Sources	15
2.3	Emerg	gence of Seismic Metamaterials	16
	2.3.1	Seismic Soil Metamaterials	17
	2.3.2	Buried Mass Resonators	18
	2.3.3	Auxetic Materials	18
	2.3.4	Above-Surface Resonators	19
		I Framework and Numerical Methodologies	21
3 Th	eoretic	al Framework and the second seco	21
3.1	Aim a	and Scope	22
3.2	Dispe	ersion Theory for Periodic Structures	22
	3.2.1	Wave Equation	22
	392	Floquet-Bloch Theory	26
	2.0.2	Periodic Boundary Conditions	29
	3.2.3	Dispersion Equation	30
	Intro Histo Lite: 2.1 2.2 2.3 3 Th 3.1 3.2	Introduction History of M Literature 2.1 Acoust 2.1.1 2.1.2 2.1.3 2.2 Negation 2.2.1 2.2.2 2.3 Emerge 2.3.1 2.3.2 2.3.3 2.3.4 3 Theoretic 3.1 Aim 3.2 Dispon 3.2.1 3.2.2 3.2.3 3.2.2 3.2.3 3.2.2 3.2.3 3.2.2 3.2.3 3.2.2 3.2.3 3.2.2 3.2.3 3.2.2 3.2.3 3.2.2 3.2.3 3.2.2 3.2.3 3.2.2 3.2.3 3.2.2 3.2.3 3.2.2 3.2.3 3.2.2 3.2.3 3.2.2 3.2.3 3.2.2 3.2.2 3.2.3 3.2.2 3.	Introduction History of Metamaterials Literature 2.1 Acoustic Metamaterials 2.1.1 Newton's Second Law 2.1.2 Continuity Equation 2.1.3 The Wave Equation 2.1.3 The Wave Equation 2.1.4 Effective Parameters in Acoustic Metamaterials 2.2.1 Effective Density: Hidden Forces 2.2.2 Effective Moduli: Hidden Sources 2.3 Emergence of Seismic Metamaterials 2.3.1 Seismic Soil Metamaterials 2.3.2 Buried Mass Resonators 2.3.3 Auxetic Materials 2.3.4 Above-Surface Resonators 3.1 Aim and Scope 3.2 Dispersion Theory for Periodic Structures 3.2.1 Wave Equation 3.2.2 Floquet-Bloch Theory 3.2.3 Periodic Boundary Conditions 3.2.4 Dispersion Equation

4	nes	uns an	nd Remarks	32
	4.1	Genera	ation of Bandgaps	32
	4.2	Bands	structures	. 02
		4.2.1	Sample 1	. 00 25
		4.2.2	Sample 2	. 30
		4.2.3	Sample 2	. 31
			Sample 5	. 38
5	Con	clusio	n	42
Bi	bliog	raphy	,	44

D-

List of Figures

2.1 (a) Optical image of a classical metamaterial structure that operates at a resonant frequency of 10.5 GHz[1], (b) Negative refractive index metamaterial for microwaves consisting of alternating layers of thin-wire media and circular Split-Ring Resonators (SRR)[2].

7

- 2.2 Photo of fabricated aluminium metamaterial cloak that works over a finite interval of wave wavelengths that do not exceed the cloak's diameter (20 cm) and for which the cross-section of its structural elements can be considered small enough (not exceeding one third of the wavelength) showing both reduced field in the centre of the cloak and cloak's transparency for a transverse electric wave at 3.5 GHz [3]
- 2.3 Normalised plot for (a) effective mass a function of hidden force and (b) showing frequency as a function of effective density . . . 13
 2.4 (a) Normalised plot for effective mass a function of hidden force and (b) Normalised plot showing frequency as a function of effective
- 2.6 Artist view of the conversion phenomena allowed by the forest as metawedge rendered from the 2D simulation results [6] 20

3.1	Schematics of the built-up stock method and in the life and 2	
	respectively.	04
3.2	Schematics of the built-up steel metion G	24
3.3	(a)Sample 1 and (b)Sample 2 (Table 2.1)	25
	strate, with height = $5a$ and height = 3 .	00
3.4	Unit cell model constructed for solving the 1	20
	(a) layered soil substrate (b) built and the dispersion relation with	
	ployed tetrahedral mesh throughout the medul	97
3.5	First Irreducible Brillouin Zone with 2D Elegent Black again disiter	21
	similar to Cheng and Shi [7]	20
3.6	Defined Floquet-Bloch periodicity in x and x directions recover	20
	tively, and the Low-Reflection Boundary applied to better and	
	the surface of the soil substrate	20
		29
4.1	Sound cone for the soil substrate	34
4.2	Dispersion curve for Sample 1 with no penetration of the sample	
	into the soil	35
4.3	Sound cone corresponding to penetration depth of $3a$ for Sample 1	36
4.4	Dispersion curve for Sample 1 with a penetration of $d = 3a$ of the	
	sample into the soil.	36
4.5	Dispersion curve for Sample 2 with no penetration of the sample	
	into the soil substrate	37
4.6	Sound cone corresponding to penetration depth of $3a$ for Sample 2	38
4.7	Dispersion curve for Sample 2 with a penetration of $d = 3a$ of the	
	sample into the soil.	39
4.8	Dispersion curve for Sample 3 with no penetration of the sample	
	into the soil substrate	39
4.9	Sound cone corresponding to penetration depth of $3a$ for Sample 3	40
4.10	Dispersion curve for Sample 3 with a penetration of $d = 3a$ of the	
	sample into the soil.	40
4 11	Bandstructure of Sample 3 for different depths at $k_x = k_y = 2\pi/a$	
1.11	(i.e. <i>M</i>)	41

Chapter 1

Introduction

Metamaterials, in general, are a class of artificial materials engineered to exhibit properties not found in naturally occurring substances. They are constructed from periodic arrangements of *sub-wavelength* unit cells (generally smaller than a third of the wavelength), allowing for precise control over wave propagation. This structured periodicity enables metamaterials to interact with waves in extraordinary ways, leading to extraordinary phenomena such as negative refraction, super-lensing, and cloaking across various wave domains. Metamaterials, crafted at a microscopic scale with unique properties, have revolutionized material science, and in acoustics, metamaterials leverage these properties to control sound wave behavior. Specifically designed structures allow us to manipulate wave paths and characteristics, enabling effects like negative refraction and wave steering for sound waves.

Acoustic metamaterials find application in diverse fields, from noise reduction to advanced imaging and signal processing. Their engineered properties pave the way for innovations in ultrasound, architectural acoustics, and the development of devices for precise sound control. The domain of acoustic metamaterials is continually advancing, promising remarkable possibilities in altering sound wave

SYNTHESIS AND CHARACTERISATION OF COPPER FERRITE NANOPARTICLES AND ITS PHOTOCATALYSIS AND ANTIBACTERIAL STUDIES

Submitted By

AFNAN

Reg No:CCAWMPH017

Department of Physics Christ College (AUTONOMOUS), Irinjalakuda

CALICUT UNIVERSITY APRIL 2024

In Partial Fulfillment of the requirements for the Degree

of

MASTER OF SCIENCE IN PHYSICS

CERTIFICATE

This is to certify that the work reported in this project report entitled "SYNTHESIS AND CHARACTERISATION OF COP-PER FERRITE NANOPARTICLES AND ITS PHOTOCATALYSIS AND ANTIBACTERIAL STUDIES " which is submitted for the partial fulfillment of the requirements for the award of the degree, Master of Science in Physics, to the Department of Physics, Christ College (Autonomous), Irinjalakuda, University of Calicut, is the result of original work carried out by AFNAN (Reg No. CCAWMPH017), under my guidance and supervision. To the best of my knowledge and belief, the work embodied in this project has not formed earlier basis of any degree or similar title of this thesis or any other university or examining body.

Date: 4/4/2024 Place: Eranakulam

Dr.Santhi.A

Supervising Guide Department of Physics St.Teresa's College (AUTONOMOUS) Eranakulam

> Dr. Santhi A. Assistant Professor and Research Guide Department of Physics St. Teresa's College (Autonomous) Ernakulam - 682 035

CERTIFICATE

This is to certify that the thesis entitled "SYNTHESIS AND CHARACTERIZATION OF COPPER FERRITE NANOPAR-TICLES AND ITS PHOTOCATALYSIS AND ANTIBACTERIAL STUD-IES " is a bonafide record of the research work carried out by Afnan under my supervision in the Department of Physics, Christ College (Autonomous),Irinjalakuda

Prof. Dr V P Joseph Professor Department of Physics Coordinator Msc Program Christ College (Autonomous) Irinjalakuda

ACKNOWLEDGEMENT

I admire God almighty with deepest gratitude, who had guided me throughout my journey. I would like to express my immense gratitude to my research guide Dr Santhi A , Assistant professor, Department of Physics, St. Terasa's college (Autonomous), Ernakulam for her guidance and great support. I am indebted to Dr. Minu Pius, Assistant professor, Department of Physics, St. Terasa's college (Autonomous), Ernakulam , and Merin, Research scholar, St. Terasa's college (Autonomous), Ernakulam who helped me for completing my project.

Special thanks to Teresian Instrumentation and Consultancy Centre (TICC), St. Terasa's college (Autonomous), Sophisticated Test and Instrumentation Centre, (CUSAT) and St. Thomas College (Autonomous), Thrissur.

I am grateful to my team mates, teachers specially Prof.Dr V P Joseph, Professor, Christ College(Autonomous), Irinjalakuda and Ms. Anju Sebastian Professor, Christ College(Autonomous), Irinjalakuda and my friends and family for their great support.Finally, I would like to express my esteemed thanks to everyone who helped me directly and indirectly to complete my project.

Date: 04 / 04 / 2024

Name AFNAN Reg No. CCAWMPH017

ABSTRACT

One of the biggest problems facing the globe today is the demand for clean water. The main cause of water contamination is human activity.Numerous industrial sectors discharge different types of effluents such as dyes and other heavy metal ions, into aquatic systems. Even at very low concentrations, these dyes have been shown to be toxic substance that pose a risk to the environment and living things. This could eventually result in an entirely out-of-balance ecological system.

The elimination of dangerous organic pollutants resulting from human activity has grown in significance for the creation of environmentally friendly water treatment methods and techniques. Different wastewater treatments exist. Organic dyes make up more than 50% of water pollution. These days, photocatalytic degradation is the most popular method. It is thought to be a cheap, easy, safe, effective, and nontoxic way to guarantee that all pollutants are fully mineralized while also producing less hazardous and environmentally friendly inorganic compounds like carbon dioxide and water.

One of the heterogeneous semiconductor photocatalyst $CuFe_2O_4$ nanoparticles which possess electrical and chemical properties, catalytic activity are considered to be efficient. In this work, I have studied the photocatalytic dye degradation of Methylene Blue . A hydrothermal method was adopted for the synthesis of $CuFe_2O_4$ nanoparticles. Structural analysis were done using XRD. The optical analysis was done by Diffussion Reflectance Spectrosopy(DRS) and Photo Luminescense studies. My project aims to purify water on large scale which is a tiny step toward the welfare of civilization.

Contents

1	IN	TRODUCTION	1
	1.1	WATER POLLUTION	1
	1.2	WATER TREATMENT METHODS	2
	1.3	PHOTOCATALYSIS IN WATER TREATMENT	2
	1.4	HISTORY OF PHOTOCATALYSIS	4
	1.5	COPPER FERRITE NANOPARTICLES AS PHOTOCATALYST	5
	1.6	CURRENT WORK	6
	a	WNTHESIS AND CHARACTERISATIO	N
2	51	INTHESIS AND CHIMAD PARTICI	F 8
	0	F COPPER FERRITE NANOPARITELI	ی ر <u>ا</u>
	2.1	COPPER FERRITE	0
	2.2	SYNTHESIS OF COPPER FERRITE	9
		2.2.1 SYNTHESIS OF NANOMATERIALS	10
		2.2.2 MATERIALS REQUIRED	11
		2.2.3 PREPARATION OF $CuFe_2O_4$ NANOPARTICLES	12
	2.3	CHARACTERISATION TECHNIQUES	13
		2.3.1 X-RAY DIFFRACTION approxpose (DRS)	. 10
		2.3.2 DIFFUSE REFLECTANCE SPECTROSCOPT (DRS)	
		2.3.3 PHOTOLUMINESCENCE	. 10
		AND ANTIRACT	E-
	P	HOTOCATALYSIS AND ANTIDACT.	D -
	5 1	TIDIES	22
	R	RIAL STUDIES	

	3.1	MECHANISM OF PHOTOCATALYSIS 23	3
	3.2	FACTORS AFFECTING PHOTOCATALYSIS	6
	3.3	KINETIC ANALYSIS OF PHOTOCATALYSIS	8
	3.4	ADVANTAGES OF PHOTOCATALYSIS	8
	3.5	LIMITATIONS OF PHOTOCATALYSIS	29
	3.6	ANTIBACTERIAL STUDIES	29
		3.6.1 PREPARATION OF NUTRIENT MEDIA	30
			1
4	R	ESULTS AND DISCUSSIONS 3	1
	4.1	PHOTOCATALYSIS OF MB	31
		4.1.1 DEGRADATION OF MB USING $CuFe_2O_4$ (annealed at	
		500 K)	31
		4.1.2 DEGRADATION OF MB USING RECYCLED $CuFe_2O_4$	33
		4.1.3 DEGRADATION OF MB USING $CuFe_2O_4$ (annealed at	
		700 K)	35
	10	ANTIBACTERIAL STUDY	37
	4.2	ANTIDAOTDANA	
			39

5 CONCLUSIONS

List of Figures

2.1	Hydrothermal unit	11
2.2	Separation of precipitate by washing with distilled water and ethanol	
	12	
2.3	Separated precipitate after several washing	12
2.4	Annealed at 700K	13
2.5	Annealed at 500K	13
2.6	Powder X-ray Diffractometer	14
2.7	Bragg's Law	14
2.8	XRD pattern of $CuFe_2O_4$ at 500 and 700 K	17
2.9	Graph between reflectance and wavelength	18
2.10	Band gap energy of $CuFe_2O_4$	20
2.11	PL spectra of $CuFe_2O_4$	21
31	General mechanism of photocatalysis	24
2.9	Schematic representation of oxidation mechanism	26
2.2	Schematic representation of reduction mechanism	26
0.0	C E O at 500K	32
4.1	Methylene Blue degradation by $CuFe_2O_4$ at 500K	32
4.2	Methylene Blue degradation by $CuFe_2O_4$ at 500K	33
4.3	% of photodegradation efficiency	34
4.4	Methylene Blue degradation by recycled $CuFe_2O_4$ at 500K	34
4.5	Methylene Blue degradation by retrieved $Cure_2O_4$ at sook \ldots	35
4.6	% of photodegradation efficiency	36
4.7	Methylene Blue degradation by $CuFe_2O_4$ at 700K	36
4.8	Methylene Blue degradation by $CuFe_2O_4$ at 700K	25
4.9	% of photodegradation efficiency	. 31

4.10	Antibacterial	activity in E coli	38
4.11	Antibacterial	activity in C A	28
		accivity in S Aureus	90

anapaer L

IN TRODUCTION

LIE WATER BOLLUTION

Chapter 1

INTRODUCTION

1.1 WATER POLLUTION

Water is the universal solvent of life and a necessary component for all living things to survive and thrive. Its importance transcends from simple hydration to include vital functions in industrial operations, agricultural production, ecological balance and human health. Serving as the cornerstone of various ecosystems, its scarcity in certain regions emphasizes how valuable it is and the need for the prudent preservation and equitable distribution[1].

Water contamination arises from multitude of sources which includes incorrect waste disposal, urban sewage, plastic, agricultural runoff, industrial discharge. These pollutants which include chemicals, heavy metals, synthetic dyes, pathogens and nutrients; damage human health, disturb ecosystem and deteriorate water quality. The open channels of rivers, canals and seas receives the tainted water, dissolves in water bodies in a way that is highly hazardous to human health. The growing problem of water pollution, mostly caused by non-degradable contaminants from industries. Synthetic dyes which are widely used in variety of industries including textile and cosmetics are among the most common pollutants , having a significant effect on water system. These dyes are easily dissolved in water, giving a vibrant color while subtly changing its chemical composition. It has negative consequences for human health including skin irritation, allergies and potentially cancer; in addition it has adverse impact on aquatic life. Their pres-

FABRICATION AND CHARACTERISTICS STUDY OF LIGHT WEIGHT HORN ANTENNA FOR H-21 LINE RECEPTION

Submitted

By

ALAN ANTONY K.J

Reg No: CCAWMPH018

Department of Physics Christ College (Autonomous), Irinjalakuda

> CALICUT UNIVERSITY APRIL 2024

In partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE IN PHYSICS

CERTIFICATE

This is to certify that the thesis entitled "FABRICATION AND CHARACTERISTICS STUDY OF LIGHT WEIGHT HORN ANTENNA FOR H-21 LINE RECEPTION" is a bona fide record of the research work carried out by ALAN ANTONY K.J (Reg No: CCAWMPH018) in the Electrimagnetic Research lab, Department of Physics, Christ college (autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of degree of Master of Science in Physics of Calicut University.

Dr. JOSEPH V P PROFESSOR DEPARTMENT OF PHYSICS CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

CO-SUPERVISOR Mr.JOSE SUNNY ASSISTANT PROFESSOR DEPARTMENT OF PHYSICS CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

ACKNOWLEDGEMENT

I take this opportunity to express my deep sense of gratitude and to extend my thanks to all the people who have inspired and motivated me during my course and project work.

First and foremost I would thank God for being able to complete this project with success. Expressing my gratitude to my guide and Dr. V P Joseph, Professor, Dept. of Physics, Christ College (autonomous) Irinjalakuda for his valuable guidance, encouragement, timely advice, immense patience and as a constant source of inspiration for choosing the right path.I am thankful to my co-guide Mr.Jose sunny for the valuable help at every stage of my work right from the starting of the work till the completion of my project.

I am also grateful to my mentor Mrs.Anju Sebastian for her sincere guidance and I would like to thank Ms. Aswathy P.V, Assistant professor of Christ College Irinjalakuda, for the constant support.

Also i am grateful to my team mates and non-teaching staffs of the Department of Physics, Christ College Irinjalakuda, for their direct and indirect support and encouragement during the execution of my project.

I am indebted to my family for their constant source of inspiration.

Date: 05/04 /2024

2 bours

ALAN ANTONY K.J Reg No: CCAWMPH018

ABSTRACT

This study focuses on the detection of the Hydrogen 21cm line using both a standard Radio horn antenna and a light weight horn antenna constructed from lightweight mesh. The project involved several crucial steps to achieve successful detection. Initially, we designed and constructed the antennas, carefully measuring each component to ensure accuracy. Subsequently, we utilized electronic equipment such as low noise amplifiers, bandpass filters, and spectrum analyzers to enhance signal reception and eliminate noise. The antennas were strategically positioned, and observations were conducted while rotating them to various angles, with a particular focus on the East-West direction. Additionally, software tools like Stellarium aided in positioning the antennas relative to celestial objects. Despite initial challenges, including signal interference from nearby towers, we persisted, refining our techniques and utilizing specialized detection software. Eventually, breakthroughs were made, with redshifts and corrected spectrum frequencies identified. The Featherlight horn antenna demonstrated exceptional performance, particularly in mitigating interference. Our findings underscore the importance of precise antenna design and signal processing techniques in radio astronomy research. Looking forward, this study paves the way for further exploration and refinement of antenna technologies in the quest to unravel the mysteries of the universe.

Contents

1	IN	TRODUCTION	1
	1.1	1.1 History of H21 Lines	1
	1.2	1.2 Significance of H21 line	3
	1.3	1.3 Antennas	4
	1.4	Different types of Antennes	0
		1.4.1 Dadie Antennas	8
		1.4.1 Radio Antenna:	8
		1.4.2 Horn antenna:	
		· · · · · · · · · · · · · · · · · · ·	9
		1.4.3 Parts of Horn Antenna:	
			13
	1.5	Horn antenna desined in HFSS Software	14
2	2.7	THEORETICAL ANALYSIS	15
	2.1	Theory of Hydrogen 21cm line	15
	2.2	How Galaxy Mapping is possible	17
	23	Mapping of Galaxy	19
	2.0	2.3.1 Mapping the galaxy using radio antennas, whether tradi-	
		tional or lightweight mesh horn antennas, involves several	
		low stops'	19
		Key steps: the line detection	22
	2.4	Methods for fizicin mile	27
	2.5	Antenna Characteristice in the purpose:	29
	2.6	Measurement devices used for the f	29
		2.6.1 Low Noise Ampliner (INTR)	32
		2.6.2 Software Defined Radio (SDR)	

		2.6.3 Band Pass Filter (BPE)	
		2.6.4 Vector Network Analyzer (VNA)	34
3	21	MD/DET a -	36
J	0.1	METHODOLOGY	39
	3.1	Stellarium Software for H21 line detection	39
		3.1.1 Features	39
		3.1.2 Advantages:	40
		3.1.3 3.1.4 Applications:	41
		3.1.4 Detecting Hydrogen 21 Lines:	41
	3.2	Experimental set-up for radiation pattern of Antenna	42
		3.2.1 The experimental setup of Horn antenna:	42
		3.2.2 Experimental Setup of light weight Antenna	46
	3.3	Experimental setup for detection of H21cm line with Horn antenna	
		and light weight horn antenna	48
4	RE	ESULT AND ANALYSIS	52
	4.1	Criteria for measuring the radiation pattern of Horn antenna and	
		light weight horn antenna	52
	4.2	Measuring the radiation Pattern of both Antennas	54
	4.3	Detection of Hydrogen 21cm line	59
	4.4	Hydrogen line observations	61
		4.4.1 H21cm line detection with Radio horn antenna	63
		4.4.2 H21cm line detection with light weight horn antenna	65
5	CO	ONCLUSION	67

List of Figures

1.1	Milkyway	
1.2	Redshifted H21 line	1
1.3	Even-Purcell with Harward	2
1.4	Graphical representation of matched	3
1.5	block diagram of Transmitting and	5
1.6	block diagram of Receiving antenna	6
1.7	Radio antenna	7
1.8	Horn antenna	9
1.9	Pyramidal horn antenna	9
1.10	Sectoral horn antenna	10
1.11	Conical horn antenna	11
1.12	Exponential horn antenna	12
1.13	Ridged horn antenna	12
1.14	parts of horn antenna	13
1 15	Horn antenna	14
1.10		
2.1	H21 Line Emission	16
2.2	Hydrogen hyperfine structure	16
2.3	Gaussian curve of 21cm Hydrogen spectrum	20
2.4	Graphical representation of rotational curve of milky way galaxy .	21
2.5	Structure of milky way galaxy	21
2.6	BHARAT	22
2.7	HERA-South Africa	23
2.8	LOFAR in Europe	24
2.9	MWA-Australia	20

2.10	PAPER	25
2.11	Radio Jove	26
2.12	SRT-Italy	27
2.13	Radiational pattern	28
2.14	LNA	30
2.15	LNA block diagram	31
2.16	SDR	32
2.17	SDR Block diagram	32
2.18	BPF-Block diagram	35
2.19	circuit diagram of BPF	35
2.20	Handheld VNA	36
2.21	VNA-block diagram	37
3.1	Stellarium software	41
3.2	Radiation pattern-block diagram	42
3.3	Experimental setup for radiation pattern with Horn antenna	44
3.4	Radio telescope receiver	45
3.5	Detection of H21 line with light weight horn antenna	47
3.6	Detection of H21 lines with light weight horn antenna	49
3.7	H21 line software	50
3.8	SDR connected to laptop	51
3.9	LNA and Band pass Measuring the radiation pattern of a radio	
	telescope antenna conected to antenna	51
4.1	Rediction pattern of Radio antenna	54
4.1	Radiation pattern of Radio antenna	55
4.2	Radiation pattern of light weight antenna	57
4.3	Radiation pattern of light weight horn antenna	58
4.4	Radiation particular and the spectrum obtained in first days-Radio horn	
4.5	Hydrogen 2200	61
	H21cm line spectrum in first days-light weight horn antenna	62
4.6	H21cm line spectrum-Radio horn antenna	63
4.7	Peak at 14201Hz	04
11 24		

4.9	H21cm line spectrum-light weight have antenna	65
4.10	Peak at 1 42071	00
	at 1.420/HZ	66

L'hapter 1

12 MACONTEN

Chapter 1

INTRODUCTION

An antenna is a reason for radiating or receiving em energy. It can be considered as a transmissions device tor transducey between a guided cwave and a free space or vice versa. J.C. Bose horn antenna were highly popular in the fields of microwave application. Due to its high gain, bandwidth, good handling capability, it is widely used for astronomical research purposes also. Our galaxy Milky way is the Combination of stars, dust particles dark matter, gas and solar system. It was originated before 14 billion years. At the center of the Milky Way, their lies a supermassive black holes called Sagittarius A which has a mass equivalent to 4.1 million times the sun. Our solar system is located in one of the spiral arms (Surrounding the central bulge) known as the

Figure 1.1: Milkyway

SYNTHESIS AND CHARACTERISATION OF CARBON QUANTUM DOTS AND THERMAL DIFFUSIVITY AND ANTI-BACTERIAL STUDIES

Submitted

By

APARNA.K.S

Reg No:CCAWMPH019

Department of Physics Christ College (Autonomous), Irinjalakuda

> CALICUT UNIVERSITY APRIL 2024

In partial fulfillment of the requirements for the Degree of

> MASTER OF SCIENCE IN PHYSICS

> > Scanned with ACE Scanner

CERTIFICATE

This is to certify that the work reported in this project report entitled "SYNTHESIS AND CHARACTERISATION OF CAR-BON QUANTUM DOTS AND THERMAL DIFFUSIVITY AND ANTI-BACTERIAL STUDIES" which is submitted for the partial fulfillment of the requirements for the award of the degree, Master of Science in Physics, to the Department of Physics, Christ College (Autonomous), Irinjalakuda, University of Calicut, is the result of original work carried out by APARNA.K.S (Reg No. CCAWMPH019), under my guidance and supervision. To the best of my knowledge and belief, the work embodied in this project has not formed earlier basis of any degree or similar title of this thesis or any other university or examining body.

Date: 4/ 4/ 2024 Place: Eranakulam

Dr.Santhi.A Supervising Guide Department of Physics St.Teresa's College (AUTONOMOUS) Eranakulam

> Dr. Santhi A. Assistant Professor and Research Guide Department of Physics St. Teresa's College (Autonomous) Ernakulam - 682 035

CERTIFICATE

This is to certify that the thesis entitled "SYNTHE-SIS AND CHARACTERISATION OF CARBON QUANTUM DOTS AND THERMAL DIFFUSIVITY AND ANTI-BACTERIAL STUD-APARNA.K. S IES" is a bona fide record of the research work carried out by name under my supervision in the Department of Physics, Christ College (Autonomous), Irinjalakuda.

Prof.V.P.JOSEPH PROFESSOR DEPARTMENT OF PHYSICS CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

ACKNOWLEDGEMENT

Many people's advice and support were crucial to the project's success and completion and it is constantly present through out the project. I am delighted to convey my profound appreciation to Dr.Santhi.A St.Teresa's College(Autonomous) Department of physics Eranakulam, My supervising guide for her insightful direction and inspiration during this task.

I owe Dr. Minu Pius, Dr. Frincy Fransis Assistant professors in the Physics Department of St. Teresa's college and Merin Research scholar for their help and assistance in each events. I would like to express special gratitude to XRD lab of St. Thomas College Thrissur, Teresian Instrumentation and Consultancy Centre (TICC) St. Teresa's College for giving adequate equipmental support.

I am really appreciative of the support that i received from my tutors, especially Prof.V.P.Joseph, Professor Christ College(Autonomous), Anju Sebastian, Assistant Professor Christ College (Autonomous), Irinjalakuda and my family and friends

Date: 4/ 4/ 2024

A arma

APARNA.K.S RegNo.CCAWMPH019

ABSTRACT

Research on carbon quantum dots is interesting and is of unlimited opportunities because of its various practical applications, including biosensing, sustained conductivity and fluorescence, and reduced toxicity.

Additional investigation into its characteristics may result in significant progress across various scientific domains and enhanced utilization of carbon quantum dots. They are currently employed as photocatalysts, biosensors, and drug transporters. The goal of this research Is to synthesize, characterize, and study carbon quantum dots' thermal diffusivity and antibacterial properties. The hydrothermal approach is the most straightforward and economical way to complete the synthesis.

It Is addressed how to use characterization techniques including optical characteristics, photoluminescence bandgap, UV-visible spectroscopy, and X-ray diffraction spectroscopy.Single beam thermal lensing is used to monitor the variation of thermal diffusivity with concentration since it is an extremely sensitive method of determining the thermal diffusivity of the given sample. Since carbon quantum dots have strong antibacterial properties, an attempt has been made in this work to see how they affect bacteria like S. aureus and E. coli.

Contents

1	II	NTRODUCTION	1
	1.1	BRIEF INTRODUCTION TO CARBON	
		QUANTUM DOTS	1
	1.2	HISTORY OF CARBON QUANTUM DOTS STUDIES	2
	1.3	GENERAL SYNTHESIS OF CARBON	
		QUANTUM DOTS AND FUTURE	3
2	S	YNTHESIS	5
	2.1	SYNTHESIS OF CARBON QUANTUM DOTS	5
	2.2	TOP-DOWN METHODS	6
		2.2.1 BALL MILLING	6
		2.2.2 LASER ABLATION	6
	2.3	BOTTOM-UP METHODS	7
		2.3.1 CHEMICAL VAPOUR DEPOSITION	7
		2.3.2 SOL-GEL METHOD	7
	2.4	HYDROTHERMAL METHOD	7
3	CI	HARACTERISATION METHODS	9
	3.1	X-RAY DIFFRACTION TECHNIQUE	9
	3.2	UV-VISIBLE SPECTROSCOPY	11
	3.3	PHOTO LUMINESCENCE	12

4 THERMAL LENSING AND ANTI-BACTERIAL
STUDIES

5

4.1	INTRODUCTION TO THERMAL	
	LENSING	14
4.2	DUAL BEAM THERMAL LENS	17
4.3	SINGLE BEAM THERMAL LENS	19
4.4	ANTI-BACTERIAL ACTIVITY	21
R	ESULTS AND DISCUSSION	24
5.1	X-RAY DIFFRACTION TECHNIQUE	24
5.2	UV-VISIBLE SPECTROSCOPY	25
5.3	PHOTO LUMINESCENCE	25
5.4	THERMAL LENSING USING SINGLE BEAM	26
5.5	ANTI-BACTERIAL STUDY	27
5.6	CONCLUSION	28

14

List of Figures

2.4.1 Hydrothermal unit

courtesy: Research laboratory physics, St. Teresa's college	8
3.1.1 Bragg's Law	10
3.2.1 Schematic diagram of UV-Visible spectrometer	12
3.3.1 Energy levels in photo luminescence condition	13
4.2.1 Schematic of Dual beam thermal lens technique	18
4.3.1 Schematic diagram of Single beam thermal lens setup	19
4.3.2 Expected time dependent probe intensity	20
4.3.3 Experimental Time dependent probe intensity	21
4.3.4 Single beam setup, courtesy: Holography lab, St. Teresa's college	21
4.4.1 Anti-bacterial study using E.coli	22
4.4.2 Anti-bacterial study using S aureus	22
5.1.1 XRD pattern of Carbon quantum dots	24
5.2.1 Absorbance spectra and tauc plot of Carbon quantum dots	25
5.3.1 PL of Carbon quantum dots at 360 nm excitation	26
5.3.2 Excitation and Emissions at different excitation wavelengths \ldots	26
5.4.1 Thermal diffusivity versus concentration plot	27

3

List of Tables

5.4.1 Table of Thermal diffusivity and concentration	27
5.5.1 Result of Anti-bacterial study	27

Chapter 1

INTRODUCTION

1.1 BRIEF INTRODUCTION TO CARBON QUANTUM DOTS

Carbon quantum dots (CQDs) are a new class of fluorescence small carbon nano particles with a particle size of less than 10 nm and have vast applications in the field of bio imaging, bio sensing and disease detection. Because of their reduced particle sizes, superior biocompatibility, excitation wavelength-dependent photoluminescence (PL) behaviour, photo-induced electron transfer, chemical inertness, and low toxicity, these materials show promise for use in nano-biotechnology[2]. Compared to conventional fluorescent semiconductor quantum dots, these materials have superior fluorescence features, including broad excitation spectra, narrow and tunable emission spectra, and great photo stability against photo bleaching and blinking. These materials are less hazardous and chemically inert, making them useful as carriers for biological imaging and drug delivery. They can also be functionalized with bio molecules. Additionally, CQDs show promise in the fields of optronics, sensors, and electrochemical luminescence. Hola et al. provide a brief overview of the fundamental photoluminescence characteristics of carbon dots as well as their sophisticated in vitro and in vivo bio applications, including targeted drug administration[7].

LIQUID CONCENTRATION STUDIES USING METAMATERIAL COMPLEMENTARY SPLIT RING RESONATORS

Submitted

By

ARJUN HARI C

Reg No:CCAWMPH020

Department of Physics Christ College(Autonomous), Irinjalakuda

> CALICUT UNIVERSITY APRIL 2024

In partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE IN PHYSICS

CERTIFICATE

This is to certify that the thesis entitled "LIQUID CONCENTRA-TION STUDIES USING METAMATERIAL COMPLEMENTARY SPLIT RING RESONATORS" is a bona fide record of the research work carried out by ARJUN HARI C (Reg No:CCAWMPH020) under my supervision in the Department of Physics, Christ college(Autonomous), Irinjalakuda in partial fulfillment of the requirement of award of degree of Master of Science in Physics of Calicut University during the academic year 2022-2024.

Dr.V P JOSEPH PROFESSOR DEPARTMENT OF PHYSICS CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

Control 14/24

CO-SUPERVISOR Mrs. ANJU SEBASTIAN ASSISTANT PROFESSOR DEPARTMENT OF PHYSICS CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

ACKNOWLEDGEMENT

I take this opportunity with immense gratitude to look upto god almighty who had guided me throughout.I would like to express my deep sense of gratitude to my research guide Dr.V.P.Joseph,Professor,Dept. of Physics,Christ College(Autonomous), Irinjalakuda for his valuable guidance,timely advice and continuous encouragement which were really beneficial to me during my work.

I would like to express my sincere gratitude to Ms.Anju Sebastian for her valuable help at every stage of my work right from starting of the work till completion of my dissertation.

I express my special gratitude to Dr.Subin K Jose,Head of Environmental Science Department,Christ College Irinjalakuda,for providing me with the necessary resources which I needed to complete the project

Special thanks to Abhijith C Preej,Jerin P.J,Anamika E.B,Farhan A.F,Adwaid K.B.They have been really helpful in various phases of project completion and have provided me with great advices and suggestions whenever needed

I am thankful to all my classmates as well as teaching and non teaching staff of Department of Physics.I am extremely grateful to my family for their unwavering support and encouragement throughout the project.

Finally I would like to express my sincere thanks to everyone who assisted me in completing this project , whether directly or indirectly.

Date:05/04/2024

Antlare.

ARJUN HARI C Reg No.CCAWMPH020

ABSTRACT

Liquid concentration measurements play a crucial role in various industrial and scientific applications, ranging from pharmaceuticals to environmental monitoring. In this project, we investigate the efficiency of Complementary Split Ring Resonators (CSRR) for precisely determining the concentration of NaCl solutions. We compare the performance of modified CSRRs with conventional CSRRs to ascertain improvements in sensitivity and accuracy. Both modified and conventional CSRR setups exhibit a noticeable correlation between the resonant frequency and the concentration of the NaCl solution. Through continous experiments, we observe that as the concentration of the NaCl solution increases, there is a systematic shift in the resonant frequency of the CSRR. This shift is due to changes in the dielectric properties of the surrounding medium, impacting the effective capacitance and inductance of the CSRR structure. Furthermore, we analyze the relationship between the concentration of the NaCl solution and the frequency shift in both modified and conventional CSRR configurations. Our findings reveal that the frequency shift exhibits a proportional increase with changes in concentration, while resonance frequency exhibit a decrease in its value with increase in concentration. Moreover, we study the comparative performance of frequency versus transmitted power characteristics for both modified and conventional CSRR setups. Our results demonstrate distinct advantages of the modified CSRR over the conventional CSSR, showcasing enhanced sensitivity and a broader dynamic range in frequency-based concentration measurements. In summary, through this project we can understand the potential of CSRR-based sensors for precise liquid concentration measurements, in NaCl solutions. The comparison between modified and conventional CSRR configurations shows us the advantages of innovative design modifications, paving the way for improved sensing capabilities in diverse applications requiring accurate concentration determination.

This dissertation is divided into 5 chapters. The first chapter consists of introduction to metamaterials. Theoretical analysis of CSRR is included in chapter 2. Simulation, Fabrication and Sample Preparation in chapter 3. Chapter 4 and chapter 5 deals with results and conclusions

Contents

1	IN	TRO	DUCTION	7
	1.1	META	MATERIALS	7
		1.1.1	HISTORY	8
	1.2	PROP	ERTIES OF METAMATERIALS	9
		1.2.1	NEGATIVE REFRACTIVE INDEX	9
		1.2.2	NEGATIVE PERMITTIVITY	10
		1.2.3	NEGATIVE PERMEABILITY	11
	1.3	TYPE	S OF SRR	11
	1.4	APPL	ICATION OF SRR	12
	1.5	CONC	ENTRATION SENSORS USING SRR	13
2	Tł	HEO.	RETICAL ANALYSIS	16
	2.1	THEO	RY OF CSRR	16
		2.1.1	EQUIVALENT CIRCUIT OF CSRR	17
		2.1.2	BABINET PRINCIPLE	19
	2.2	FABR	ICATION METHOD OF CSRR	20
	2.3	MEAS	SUREMENT TECHNIQUES IN CSRR	20
		2.3.1	S PARAMETERS	21
	2.4	SIMU	LATION STUDIES OF HFSS	22
	2.5	CONC	CENTRATION MEASUREMENT OF NaCl	24
		2.5.1	Introduction	24
		2.5.2	Experimental Setup	24
		2.5.3	Procedure	24
		2.5.4	Results	25

		2.5.5	Conclusion	25
3	SI. PI		ATION, FABRICATION AND SAM	-
	31	CSPD	ALLON AND ALLON	26
	0.1	SOP	AS A LIQUID CONCENTRATION MEASUREMENT SEN-	00
	20	DESICI	NOF CONTRACTOR	20
	2.2	SIMIL	ATION OF CONVENTIONAL CSRR SENSOR	20
	0.0	USINC	HESS	28
		221	NULL ATION OF CONTRACTIONAL CERPTUSING HESS	20
		5.5.1	SIMULATION OF CONVENTIONAL CSRR USING HF55	20
		220	SIMULATION OF CONVENTIONAL CERP LISING HESS	20
		3.3.2	SIMULATION OF CONVENTIONAL CSRR USING IN 55	30
		222	SIMULATION OF CONVENTIONAL CSPR USING HESS	00
		3.3.3	WITH SLIT WIDTH 0.2mm	31
		224	SIMULATION OF CONVENTIONAL CSBB USING HESS	
		3.3.4	WITH SLIT WIDTH 0.4mm	32
		0.05	CIMULATION OF CONVENTIONAL CSBB USING HESS	
		3.3.5	SIMULATION OF CONVENTIONAL COLUCTION	33
			WITH SLIT WIDTH COMMENTIONAL CSBB USING HESS	
		3.3.6	SIMULATION OF CONVENTION HE OF ALL OF	34
			WITH SELL WIDTH CONVENTIONAL CSBR USING HESS	
		3.3.7	SIMULATION OF CONVENTIONIE OF a convention	35
			WITH SLIT WIDTH OTHIN TO NAL CSBR USING HFSS	
		3.3.8	SIMULATION OF CONVENTIONIE CONVENTIONE	36
			WITH SLIT WIDTH CONVENTIONAL CSRR USING HFSS	
		3.3.9	SIMULATION OF CONVENTIONIE COLOR COL	37
			WITH SLIT WIDTH 0.9MM	
		3.3.10	SIMULATION OF CONVENTIONAL OBJACT CONTAINED	. 38
			WITH SLIT WIDTH IMM	3
		3.3.11	SIMULATION OF CONVENTIONAL ODITIONAL ODITIONAL	30
			WITH SLIT WIDTH 1.25mm	. 0.

		3.3.12 SIMULATION OF CONVENTIONAL CSRR USING HFSS	
		WITH SLIT WIDTH 1.5mm	40
		3.3.13 SIMULATION OF CONVENTIONAL CSRR USING HFSS	
		WITH SLIT WIDTH 1.75mm	41
		3.3.14 SIMULATION OF CONVENTIONAL CSRR USING HFSS	
		WITH SLIT WIDTH 2mm	42
	3.4	MODIFIED CSRR STRUCTURE	43
	3.5	FABRICATION OF CONVENTIONAL AND MODIFIED CSRR	44
	3.6	MEASUREMENT SETUP USING VNA	45
	3.7	SAMPLE PREPARATION	47
		3.7.1 EXPERIMENTAL PROCEDURE FOR SAMPLE PREPA-	
		RATION	47
4	RI	ESULTS AND DISCUSSIONS	51
	4.1	COMPARISON BETWEEN SPLITWIDTH AND RESONANT FRE-	-
		QUENCY USING HFSS FOR CONVENTIONAL CSRR	51
	4.2	CONCENTRATION MEASUREMENT OF NaCl USING MODI-	
		FIED CSRR	54
		4.2.1 S21 GRAPHS OBTAINED IN VNA USING MODIFIED	
		CSRR	56
	4.3	CONCENTRATION MEASUREMENT OF NaCl USING CON-	
		VENTIONAL CSRR	60
		4.3.1 S21 GRAPHS OBTAINED IN VNA USING CONVEN-	
		TIONAL CSRR	62
		COMPARISON OF RESONANCE BETWEEN CONVENTIONAL	
	4.4	AND MODIFIED CSRR	64
5	C	ONCLUSION	68

List of Figures

2.1	Simulation works by HFSS	23
2.2	Simulation works by HFSS	24
3.1	Design of cssr sensor	28
3.2	Simulation of conventional CSRR with slitwidth 0.1mm	29
3.3	Graph of conventional CSRR with slitwidth 0.1mm	29
3.4	Simulation of conventional CSRR with slitwidth 0.2mm	30
3.5	Graph of conventional CSRR with slitwidth 0.2mm	30
3.6	Simulation of conventional CSRR with slitwidth 0.3mm	31
3.7	Graph of conventional CSRR with slitwidth 0.3mm	31
3.8	Simulation of conventional CSRR with slitwidth 0.4mm	32
3.9	Graph of conventional CSRR with slitwidth 0.4mm	32
3.10	Simulation of conventional CSRR with slitwidth 0.5mm	33
3.11	Graph of conventional CSRR with slitwidth 0.5mm	33
3.12	Simulation of conventional CSRR with slitwidth 0.6mm	34
3.13	Graph of conventional CSRR with slitwidth 0.6mm	34
3.14	Simulation of conventional CSRR with slitwidth 0.7mm	35
3.15	Graph of conventional CSRR with slitwidth 0.7mm	35
3.16	Simulation of conventional CSRR with slitwidth 0.8mm	36
3.17	Graph of conventional CSRR with slitwidth 0.8mm	36
3.18	Simulation of conventional CSRR with slitwidth 0.9mm	37
3 19	Graph of conventional CSRR with slitwidth 0.9mm	37
3 20	Simulation of conventional CSRR with slitwidth 1mm	38
3 21	Graph of conventional CSRR with slitwidth 1mm	38
3.00	Simulation of conventional CSRR with slitwidth 1.25mm	39

3.23	Graph of conventional CSPP with alitariath 1.25mm	39
3.24	Simulation of conventional CSPR with slitwidth 1.25mm	40
3.25	Graph of conventional CSRR with slitwidth 1.5mm	40
3.26	Simulation of conventional CSRP with slitwidth 1.75mm	41
3.27	Graph of conventional CSRR with slitwidth 1.75mm	41
3.28	Simulation of conventional CSRR with slitwidth 2mm	42
3.29	Graph of conventional CSRR with slitwidth 2mm	42
3.30	Design of csrr sensor	43
3.31	Conventionl CSRR sensor	44
3.32	Modified CSSR sensor	44
3.33	Vector network analyser setup	45
3.34	Measuring instruments	49
3.35	Solution of NaCl of different concentrations	50
		51
4.1	Splitwidth vs resonant frequency	51
4.2	Frequency vs concentration graph for 0.001N,0.005N,0.007N NaCl	- 1
		94
4.3	Frequency shift vs concentration graph for 0.001N,0.005N,0.007N	
	NaCl solution	55
4.4	Frequency vs transmitted power graph (modified csrr+container)	50
4.5	Frequency vs transmitted power graph(modified csrr+container+distr	illed
	water)	57
4.6	Frequency vs transmitted power graph(modified csrr+container+0.00	2N
	NaCl sol)	57
4.7	Frequency vs transmitted power graph(modified csrr+container+0.00)4N
	NaCl sol)	58
4.8	Frequency vs transmitted power graph(modified csrr+container+0.00)6N
	NaCl sol)	58
4.9	Frequency vs transmitted power graph(modified csrr+container+0.1)	N
	NaCl sol)	59
4.10	Frequency vs transmitted power graph(modified csrr+container+0.2)	N
	NaCl sol)	59
4.11	Frequency vs transmitted power	60

4.12	Concentration vs frequency 0N.0.1N.0.4N.0.6N(conventional)	61
4.13	Concentration vs frequency shift 0N.0.1N.0.4N.0.6N(conventional)	61
4.14	Frequency vs transmitted power graph(conventional CSRR)	62
4.15	Frequency vs transmitted power graph(conventional CSRR+container)	63
4.16	Frequency vs transmitted power graph(conventional CSRR+container-	+ distilled
	water)	63
4.17	Transmission Spectra: resonace frequency vs transmitted power for	
	NaCl solution(conventional)	64

MARIAMATEMIALS

6

Chapter 1

INTRODUCTION

1.1 METAMATERIALS

Metamaterials, denoted by the prefix "meta" meaning "beyond" in Greek, represent artificial materials exhibiting electromagnetic characteristics not present in natural materials such as glass or diamond. Unlike conventional materials with positive electrical permittivity, magnetic permeability, and refractive index, metamaterials, also known as negative index materials (NIM), double negative (DNG) media, left-handed (LH) materials, or backward wave (BW) media, display negative values for these parameters.

These unconventional material properties enable the creation of miniaturized antennas and microwave components for applications in wireless communications and defense industries. In the field of optics, metamaterials introduce the possibility of a "super" lens capable of focusing on features smaller than the wavelength of the light itself. This advancement opens avenues for sub-wavelength magnetic resonance imaging (MRI) in medical applications, offering increased resolution for observing minute cancerous cells.

Notably, the electrical permittivity (ϵ) and magnetic permeability (μ) of meta materials are negative, leading to a negative refractive index. Consequently, when light enters meta materials from a vacuum, it bends away from the normal direction, contrary to the typical bending towards the normal in conventional materials.

An immediate consequence of negative ϵ and μ in meta materials is the formation of a left-handed triplet in the electric field (E), magnetic field (H), and phase

SYNTHESIS AND CHARACTERISATION OF COPPER NANO PARTICLE AND ITS THERMAL DIFFUSIVITY MEASUREMENT AND ANTIBACTERIAL STUDY

submitted

By

ARYA SUNIL

Reg No:CCAWMPH021

Department of Physics Christ college Irinjalakuda

CALICUT UNIVERSITY APRIL 2024

In patrial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE IN PHYSICS

CERTIFICATE

This is to certify that the work reported in this project report entitled "SYNTHESIS AND CHARACTERISATION OF COP-PER NANOPARTICLES AND ITS THERMAL DIFFUSIVITY MEA-SUREMENT AND ANTIBACTERIAL STUDY " which is submitted for the partial fulfillment of the requirements for the award of the degree, Master of Science in Physics, to the Department of Physics, Christ College (Autonomous), Irinjalakuda, University of Calicut, is the result of original work carried out by ARYA SUNIL (Reg No. CCAWMPH021), under my guidance and supervision. To the best of my knowledge and belief, the work embodied in this project has not formed earlier basis of any degree or similar title of this thesis or any other university or examining body.

Date: 4/4/2024 Place: Eranakulam

Dr.Santhi.A Supervising Guide Department of Physics St.Teresa's College (AUTONOMOUS) Eranakulam

> Dr. Santhi A. Assistant Professor and Research Guide Department of Physics St. Teresa's College (Autonomous) Ernakulam - 682 035

CERTIFICATE

This is to certify that the thesis entitled "SYNTHESIS AND CHARACTERISATION OF COPPER NANO PARTICLE AND ITS THERMAL DIFFUSIVITY MEASUREMENT AND ANTIBAC-TERIAL STUDY" which is a bona fide record of the research work carried out by ARYA SUNIL under my supervision in the Department oh physics, St Teresa's college (autonomous) Ernakulam.

Prof.Dr V P Joseph Depatrment Of Physics Christ college (Autonomous) Irinjalakuda

ACKNOWLEDGEMENT

I admire God almighty with deepest gratitude, who had guided me through out my journey. I would like to express my immense gratitude to my research guide Dr Santhi A, Assistant professor, Department of Physics, St. Teresa's college(Autonomous),Ernakulam for her guidance and great support. I am indebted to Dr Frincy Francis(Assistant professor,Department of Physics, St. Teresa's college(Autonomous)), Merin (Research scholar St. Teresa's college(Autonomous), Ernakulam, who helped me for completing my project.

Special thanks to Teresian Instrumentation and Consultancy Centre (TICC), (St. Teresa's college (Autonomous), Ernakulam), St. Thomas college, Thrissur.

I am greatful to my team mates, teachers specially Dr.prof.V P Joseph (Professor, Christ College (Autonomous), Irinjalakuda and Ms. Anju Sebastian (Assistant Professor, Christ College (Autonomous), Irinjalakuda), and my friends and family for their great support.

Finally, I would like to express my esteemed thanks to every one who helped me directly and indirectly to complete my project.

Date: 04 / 04 /2024

ARYA SUNIL Reg No:CCAWMPHO21

ABSTRACT

A novel class of solid-liquid composite material called nanofluids is made up of solid nanoparticles (size ranging from 1 to 100 nm)scattered throughout a base fluid. When compared to other noble metals, copper nanoparticles have superior catalytic effectiveness, which has drawn a lot of attention to them.

This work represents chemical synthesis of copper nanoparticles and its characterisation. Here a detailed description of Thermal Lens technique which is an application of copper nanoparticle is presented. Thermal lens spectroscopy was used to obtain the thermal diffusivity of Cu Nps for different concentrations. Using single beam mode matched thermal lensing technique determine the thermo optic properties of synthesised system.

The fundamental idea behind photothermal method is the thermal lens effect, which is caused by an excited species that, when exposed to a laser beam with a Gaussian intensity profile, experiences nonradiative relaxation. Copper nanoparticles used in random lasers and biomedical application.

In this paper also determined Antibacterial activity using the test orgnisms E.colli and S.aurues. Copper nanoparticles give good result in both gram positive and gram negative antibacterial study.

Contents

INTRODUCTION 1 1 SYNTHESIS AND CHARACTERISATION 2 OF COPPER NANOPARTICLES 4 4 SYNTHESIS 2.1 4 2.2 2.2.12.2.2 2.2.3 2.2.4 2.2.5 2.3 Milling process 2.3.12.3.2 2.3.3 SYNTHESIS OF COPPER NANOPARTICLES. 2.4 10 2.5 11 Determination of crystallites size 2.5.113 Absorption spectroscopy 2.5.2 14 2.5.3 16 2.5.4

5

5

6

6

6

7

7

7

7

8

THERMAL LENS TECHNIQUE TO MEA-

3

	SURE THERMAL DIFFUSIVITY OF COP-					
	PE	R NANOPARTICLES	19			
	3.1	THERMAL LENS SPECTROSCOPY	19			
	3.2	THERMAL LENS EFFECT	20			
	3.3	INSTRUMENTATION	22			
		3.3.1 Single beam instrumentation	22			
		3.3.2 Dual beam instrumentation	23			
	3.4	EXPERIMENTAL TECHNIQUES	24			
		3.4.1 Single beam instrumentation	24			
	3.5	DETERMINATION OF ANTIBACTERIAL ACTIVITY	27			
4	RI	ESULTS AND DISCUSSIONS	29			
	4.1	THERMAL LENSING	29			
		4.1.1 Determination of Thermal diffusivity using Single beam ther-				
		mal lens technique	29			
	4.2	ANTIBACTERIAL STUDY	31			
		P. P. Specces of Cis Nps				
5	C	ONCLUSION AND FUTURE PROSPEC	TS 33			
	5.1	CONCLUSION	. 33			
	5.2	FUTURE PROSPECTS	. 34			
	0.1					

List of Figures

2.1	Synthesis process	4
2.2	Blue coloured copper	9
2.3	when starch added	9
2.4	when sodium hydroxide added	10
2.5	final stage of copper nanoparticles	10
2.6	Bragg's Law	12
2.7	XRD pattern of CuNps	13
2.8	Absorption spectra of Cu Nps	16
2.9	Radiative non-radiative transition	17
2.10	PL Spectra of Cu Nps	18
		21
3.1	Thermal lens formation	23
3.2	Single beam istrumentation	24
3.3	Dual beam instrumentation	25
3.4	Experimental setup done in the laboratary	26
3.5	Thermal blooming	26
3.6	Thermal decay curve as obtained in the DSO	
0.0	the state versus concentration plot	30
4.1	Thermal diffusivity versus ded for Cu Nps	30
4.2	2 Thermal lens signal recorded for	31
4.3	3 Antibacterial activity in E.com	32
4	Antibacterial activity in S. aureus	

Chapter 1

INTRODUCTION

Nano-based fluids, which are composed of a base fluid and a small amount of nanosized metal particles or metal oxides, are used in a variety of human applications, such as power and chemical engineering devices, medicine, electronics and more.

In the history of nano fluids we can see theory of heat transport was initially developed thanks to Galileo. Galilei developed the Galilean thermometer in the middle of the sixteenth century, and in the eighteenth century, he proposed Newton's Law of Cooling. One more The breakthrough in 1822 came from Fourier's mathematical theory of heat transmission. In addition, it resulted in the formulation of several basic theories related to heat, temperature, thermal energy, thermodynamics, and many other topics.[4, 7, 8].

Several scientists have used a variety of active and passive techniques to enhance the heat transmission mechanisms in liquids [6]. By dispersing extremely small magnetic particles in typical heat transfer fluids, a research team under the direction of Akoh et al. investigated the impact of particle suspension on heat transmission for the first time [2]. Later, Maxwell, Hamilton, and Crosser proposed a number of ground-breaking theories on the thermal conductivity of solid-liquid combinations[11] Because of its multifunctional character, nanofluid offers an array possibilities for research and exploration at the leading edges of

nanotechnology. Although theoretical research on potential heat transfer processes has been started, the biggest obstacle to date is still knowing how heat is transferred in

ATTEMPTS TO SIMPLIFY THE COMPUTATIONAL COST OF MATHEMATICAL PHYSICS PROBLEMS INVOLVING MULTIPLE INTEGRATION

Submitted

By

FARHAN A F

Reg No:CCAWMPH022

Department of Physics Christ College,(Autonomous) Irinjalakuda

CALICUT UNIVERSITY APRIL 2024

In partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE IN PHYSICS

CERTIFICATE

This is to certify that the thesis entitled "ATTEMPTS TO SIM-PLIFY THE COMPUTATIONAL COST OF MATHEMATICAL PHYSICS PROBLEMS INVOLVING MULTIPLE INTEGRATION" is a bona fide record of the research work carried out by FARHAN A F(Reg no:CCAWMPH022) in Department of Physics, Christ College (Autonomous) Irinjalakuda in partial fulfilment of the requirement for the award of degree of Master of Science in Physics of Calicut University.

Dr. V.P JOSEPH PROFESSOR DEPARTMENT OF PHYSICS CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

ACKNOWLEDGEMENT

١

I would like to express my deep sense of gratitude to my research guide, Dr. V.P. Joseph, Professor, Dept. of Physics, Christ College (Autonomous), Irinjalakuda, for his guidance, immense support, and continuous encouragement.

I am grateful to all my classmates, as well as to the teachers and nonteaching staff of the Department of Physics including Head of Physics Department, Professor V.P. ANTO.I am also grateful to my mentor Mrs. Anju Sebastian for her sincere guidance.

Finally, I would like to express my sincere thanks to everyone who assisted me in completing this project, whether directly or indirectly.

Date:April 3, 2024

Forhard FARHAN A F

Reg No.CCAWMPH022

ABSTRACT

We can calculate n fold integrals and derivative exponentially faster using fractional calculus which save computational cost. in this theses we can find errors in gamma function so we need new gamma function,we also discuss gamma function for variables,we can also find laplace transform of functions whose value is ∞

Here we are using python to demonstrate the power of fractional calculus.we can also find negative integer factorial we can find general trend using (-1)!=1/0 apply left limit and right limit

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

In all research need for computing power is increasing day by day. Even though we have super computer .it is not sufficient fulfill needs of all kinds of research. Many researchers can't afford to use super computer.so what we do?. There are 3 ways to solve this issue. first one is researchers can use distributed systems like boinc distributed computing software, another one is using CUDA along with Nvidia GPU or using cloud computing to accelerate computing task, last one is optimizing the Algorithm using various mathematical tools to save computational cost. we are modifying conventional method to solve n fold integrals not only that we can find gamma function of zero $\Gamma(0) \neq \infty$. We can solve n fold integrals exponentially faster along with less memory usage. These problems are seen in many fields like physics, mathematics, computer science, digital biology, chemistry.

In physics we can use this method in signal processing, image analysis, control systems.

In computer science we can optimize machine learning tasks.

Contents

1	INT	RODU	JCTION 1	
	1.1	Histor	y	
		1.1.1	Euler (1730) and Lacroix (1819)	
		1.1.2	J.B.J fourier (1820-1822)	
		1.1.3	Abel (1823)	
		1.1.4	J Lioville (1832 - 1855)	
		1.1.5	G.F.B Riemann (1847 - 1876)	
		1.1.6	Sonin(1869),Letnikov(1872),Laurent(1884)	
			Nekrasore(1888), Nishimoto(1987)	
		1.1.7	Riemann-Liouville	
		1.1.8	Grünwald-Letnikov	
		1.1.9	M.caputo(1967)	
		1.1.10	K S Miller, B Ross (1993)	
	1.2	Useful	Mathematical functions	
		1.2.1	Gamma function	
		1.2.2	Beta function	
		1.2.3	Error function	
		1.2.4	Mittag-Leffler function	
		1.2.5	Mellin Ross function	
		1.2.6	sine and cosine function	
		1.2.7	b^x	
		1.2.8	Product Rule for m^{th} Derivative	
	1.3	proof	7	
		131	proof of Riemann Liouville fractional integral	

1

	1.4	power	rule	9
2	LA	PLACE	TRANSFORM AND INCOMPANY OF GAMMA	
	FU	NCTIO	ON	A 10
		2.0.1	Euler form	10
		2.0.2	Recursive formula	10
		2.0.3	$\ln x$	12
		2.0.4	Laplace transform	13
		2.0.5	Derivative of Transforms	14
		2.0.6	convolution	14
		2.0.7	convolution theorem	14
		2.0.8	Laplace transform of fractional integral	15
		2.0.9	Fractional Differential Equations	16
		2.0.10	First Shifting Theorem	16
		2.0.11	Second Shifting Theorem	16
		2.0.12	Transform of a Periodic Function	17
		2.0.13	Gamma Function for variables	17
3	AP	PLICA	TIONS IN PHYSICS AND COMPUTER SCIENCE	19
	3.1	Applic	ations in Physics	19
	3.2	Reduci	ing Time Complexity of	
		N-fold	Integrals	20
	3.3	Applic	ations of New Gamma Function	21
	3.4	Applic	ations in fractional calculus	22
	3.5	Applica	ations in fractional permutations	22
	3.6	Applica	ations in fractional Combinations	23
			THE DISCUSSION	26
4	RES	SEARC	CH AND DISCOURSE	26
		4.0.1	Unit	26
		4.0.2	Reverse of minut	28
		4.0.3	Future work	28
		4.0.4	Generalised Gamma functions	28
		4.0.5	Physics problems	

		4.0.6	Device Specification	29											
		4.0.7	implementation of our algorithm	29											
	4.1	Compa	arison												
	4.2	Norma	I code of another function	33											
5	CO	NCLU	SION	37											
	5.1	Why w	we need high complexity mathematics	37											
		5.1.1	negative integer factorial and fractional permutations	38											
		5.1.2	Concept of variable factorial	38											
		5.1.3	How to find integrals and derivatives faster using these concept	39											
	5.2	Lapla	ce transform	39											

List of Figures

4.1	gamma	fı	ın	ct	io	n	•		•	•		•	•		•	•	•	•	•	•	•	•	•	•	·	·	•	•	27
4.2	$\sin(x)$				•					•						•	•				•	•	•		•		•		27
4.3																				•		•			•	•		•	31
4.4																						•	•					•	32
4.5																													36

Chapter 1

INTRODUCTION

fractional calculus is extension of differentiation and integration to complex number order or quaternions (4D numbers) .Fractional calculus has been applied in various fields, including physics, engineering, and finance. [4]

The results of fractional calculus have applications in various fields, including signal processing, control theory, and image processing.

in calculus we have clear physical, geometric interpretations

we are going to extend gamma function to find negative integer factorial we will prove that it is not ∞ but a function when we extend gamma function we can solve n fold derivatives or integral faster using our function. we can't find laplace transform of some functions but using extended gamma function we can find it. These have applications in FFT(Fast fourier transform)

we have to find general trend of different function in order to find n-fold integral/derivative

if we extend permutation we can solve many problems in fractional calculus much more easily. This extension of permutation is called fractional permutation. Domain of fractional permutation is complex numbers or quaternions (4D numbers).permutation is approximation of fractional permutation

COMPACTION ANALYSIS OF FOOD POWDERS USING MODIFIED CSRR SENSOR WITH ENHANCED RESONANCE CHARACTERISTICS

Submitted

 $\mathbf{B}\mathbf{y}$

JERIN P J

Reg No: CCAWMPH024

Department of Physics Christ College (Autonomous), Irinjalakuda

CALICUT UNIVERSITY APRIL 2024

In partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE IN PHYSICS

Scanned with CamScanner

CERTIFICATE

This is to certify that the thesis entitled "COMPACTION ANALYSIS OF FOOD POWDERS USING MODIFIED CSRR SENSOR WITH EN-HANCED RESONANCE CHARACTERISTICS" is a bonafide record of the research work carried out by JERIN P J (CCAWMPH024) under my supervision in the Electromagnetic Metamaterial Research Lab (EMRL), Department of Physics, Christ College (Autonomous), Irinjalakuda in partial fulfillment of the requirements for the award of degree of master of science in physics of calicut university.

SUPERVISOR Dr.V.P JOSEPH PROFESSOR DEPARTMENT OF PHYSICS CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

flunch

CO-SUPERVISOR Mrs. ASWATHI P.V ASSISTANT PROFESSOR DEPARTMENT OF PHYSICS CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

DECLARATION

I JERIN P J, hereby declare that the work presented in this thesis entitled "COMPACTION ANALYSIS OF FOOD POWDERS USING MODI-FIED CSRR SENSOR WITH ENHANCED RESONANCE CHARAC-TERISTICS" is based on the original work done by me under the guidance of Dr.V.P Joseph, Professor, Department of Physics, Christ College(Autonomous) Irinjalakuda and has not included in any other thesis submitted previously for the award of any other degree.

Name: JERIN P J

Date: 05/04/2024

Reg No: CCAWMPH024
ACKNOWLEDGEMENT

I express my deep sense of gratitude and extend my thanks to the people who have inspired and motivated me during my course and project work. Primarily I would thank god for being able to complete this project work with success. I owe a great deal to my project guide Dr.V.P.Joseph, Professor, Christ College (Autonomous), Irinjalakkuda, for his valuable guidance, his wholehearted dedication, help and support.

I am grateful to my co-guide Mrs.Aswathi P.V, Assistant Professor and Research scholar of Electromagnetic Metamaterial Research Lab (EMRL) Christ College (Autonomous), Irinjalakuda for providing me with all resources i needed to successfully complete my work.

Special thanks to my class teacher Mrs.Anju Sebastian, Assistant Professor and Research scholar of Electromagnetic Research Lab (EMRL) Christ College Autonomous Irinjalakuda for the valuable contribution and providing great suggestions and advice in various phases of project completion.

I would like to express my sincere gratitude to the Department of Chemistry, Christ College (Autonomous), Irinjalakuda for providing me instruments required for my project work.

I am immensely grateful to my parents for their constant support, without which this project would not have been viable.

Finally i would like to express a sincere thanks to everyone who had assisted me directly and indirectly.

Date: 05/04/2024

Name: JERIN P J

Reg No: CCAWMPH024

Scanned with CamScanner

ABSTRACT

Metamaterials are artificially fabricated materials having unusual electromagnetic properties. Permittivity and permeability are two electromagnetic properties of materials. Naturally occurring materials have positive values for the permittivity and permeability. While metamaterials have negative values for the permittivity and permeability. Split Ring Resonators (SRR) is the negative permeability counter part of the metamaterial. There are different types of SRR in size and shape. SRR consists of two metallic copper ring structures with a split at opposite sides. The Complementary Split Ring Resonator (CSRR) is the complementary structure of SRR. This SRR and CSRR exhibits LC resonance nature due to the capacitance and inductance arise in them due the charges and current induced in the structure when a time varying electromagnetic field is applied to the structure. This project focuses on the sensing application of the CSRR sensor.

In this project work, a modified structure of the CSRR sensor with enhanced resonance characteristics is introduced. This modified CSRR sensor is designed, simulated and experimentally verified. The simulation of the structure is done in High Frequency structure simulator (HFSS) software and experimentally verified using the device Vector Network Analyzer (VNA). The simulation results and the experimental results are in good agreement. Compaction analysis of food powders(Corn flour, Gram flour, Refined Wheat flour and Ragi flour) are done as an application of this modified CSRR sensor with enhanced resonance characteristics. The food powders in packing stage requires minimum volume to reduce the shelf space. The volume can be minimized by maximizing the density of the food powders. The density of the food powders can be determined with the modified CSRR sensor. This helps in minimizing the volume of the food powders at packing stage. This thesis is divided into five chapters. The fist chapter gives an introduction to metamaterials. The second chapter deals with theoretical analysis of the CSRR sensor. The designing, simulation, fabrication and experimental methods are given in third chapter. Fourth chapter contains the results of simulation and experiments. The fifth chapter incorporates the conclusion of the work done in this project.

Contents

1	Int	roduction	1
	1.1	Metamaterials	2
	1.2	History	4
	1.3	Properties	5
		1.3.1 Negative Electrical Permittivity	5
		1.3.2 Negative Magnetic Permeability	6
		1.3.3 Negative Refractive Index	6
		1.3.4 Reversal of Snell's Law	6
		1.3.5 Reversal of Doppler Effect	7
		1.3.6 Reversal of Vavilov-Cherenkov Radiation	8
	1.4	Applications	8
		1.4.1 Metamaterials as Antenna	8
		1.4.2 Metamaterials as Absorber	9
		1.4.3 Metamaterials as Cloaks	9
		1.4.4 Metamaterials as Super Lenses	10
		1.4.5 Metamaterials as Sensors	10
			11
2	The	eoretical Analysis	11
	2.1	Metamaterial Sensors	11
	2.2	Transmission Lines	11
		2.2.1 Planar Transmission Line	12
		2.2.2 Strip Line	12
		2.2.3 Microstrip Line	12
	0.0	Microstrip Transmission Line	12
	2.3	MICLOSULY ****	

	2.4	Microv	vaves	14
		2.4.1	Vector Network Analyzer (VNA)	15
	2.5	Planar	Resonant Sensors	16
	2.6	CSRR	Sensor	16
	2.7	Excita	tion of CSRR Sensors	18
	2.8	Equava	alent Circuit Model of CSRR Sensor	19
3	Met	thodolo	ogy and Experimental Setup	20
	3.1	Simula	ation and Fabrication of CSRR Sensor	20
		3.1.1	Designing of Conventional CSRR Sensor	20
		3.1.2	Simulation of CSRR Sensor	23
		3.1.3	Modification of CSRR Sensor	30
		3.1.4	Simulation of Modified CSRR Sensor	31
		3.1.5	Sensitivity Comparison of Conventional and Modified CSRR	
			Sensor	33
		3.1.6	Fabrication of CSRR Sensor	38
		3.1.7	Fabrication of Modified CSRR Sensor	43
	3.2	Comp	action Analysis Using Modified CSRR Sensor	44
		3.2.1	Corn Flour	48
		3.2.2	Gram Flour	51
		3.2.3	Refined Wheat Flour	54
		3.2.4	Ragi Flour	57
		14	d Discussion	60
4	Res	ults ar	Section of CSBB Sensor	60
	4.1	Modif	Circulation Results From HFSS	60
		4.1.1	Emimental Besults From VNA	62
		4.1.2	Experimental Versus Simulation Results	64
		4.1.3	Experimental verbal site	67
		4.1.4	Comparison of Sensitivity	68
	4.2	Comp	action Analysis	68
		4.2.1	Corn Flour	70
		4.2.2	Gram Flour	72
		4.2.3	Refined Wheat Flour	

		4.2.4	Ragi Flour .	•	÷	•	•	•	•	·	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	ſ	Ċ		
--	--	-------	--------------	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--

5 Conclusion

77

SYNTHESIS AND CHARACTERISATION OF CALCIUM TUNGSTATE NANO PARTICLE AND ITS PHOTOCATALYSIS AND ANTIBACTERIAL STUDY

Submitted

By

LAKSHMI V S

Reg No: CCAWMPHO25

Department of Physics Christ College(Autonomous), Irinjalakuda

CALICUT UNIVERSITY APRIL 2024

In partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE IN PHYSICS

CERTIFICATE

This is to certify that the work reported in this project report entitled "SYNTHESIS AND CHARACTERISATION OF CAL-CIUM TUNGSTATE NANOPARTICLE AND ITS PHOTOCATALY-SIS AND ANTIBACTERIAL STUDY" which is submitted for the partial fulfillment of the requirements for the award of the degree, Master of Science in Physics, to the Department of Physics, Christ College (Autonomous), Irinjalakuda, University of Calicut, is the result of original work carried out by LAKSHMI V S (Reg No. CCAWMPH025), under my guidance and supervision. To the best of my knowledge and belief, the work embodied in this project has not formed earlier basis of any degree or similar title of this thesis or any other university or examining body.

Date: 4/ 4/ 2024 Place: Eranakulam

Dr.Santhi.A Supervising Guide Department of Physics St.Teresa's College (AUTONOMOUS) Eranakulam

> Dr. Santhi A. Assistant Professor and Research Guide Department of Physics St. Teresa's College (Autonomous) Ernakulam - 682 035

CERTIFICATE

This is to certify that the thesis entitled "SYNTHESIS AND CHARACTERISATION OF CALCIUM TUNGSTATE NANO PARTICLE AND ITS PHOTOCATALYSIS AND ANTIBACTERIAL STUDY" being submitted by LAKSHMI V S, Department of Physics, Christ College(Autonomous), Irinjalakuda, Thrissur is based on the investigation carried out by her under the guidance and supervision of Dr. Santhi A, Assistant professor, Department of Physics, St. Teresa's college (Autonomous), Ernakulam.

Place: Date

Dept. of Physics

Prof. V P Joseph Professor Department of Physics Coordinator Msc Program Christ College(Autonomous) Irinjalakuda, Thrissur

ACKNOWLEDGEMENT

I admire God almighty with deepest gratitude, who had guided me through out my journey.

I would like to express my immense gratitude to my research guide Dr Santhi A, Assistant professor, Department of Physics, St. Teresa's college(Autonomous), Ernakulam for her guidance and great support.

I am indebted to Dr. Minu Pius, Assistant Professor, Deparment of physics, St. Terasa's college(Autonomous), Ernakulam, and Merin Joby, Research scholar, St. Teresa's college(Autonnomous), Ernakulam, who helped me for completing my project.

Special thanks to Teresian Instrumentation and Consultancy Centre (TICC), (St. Teresa's college (Autonomous), Ernakulam), Sophisticated Test and Instrumentation Centre, (CUSAT), St. Thomas college, Thrissur.

I am greatful to my team mates, all teachers specially Prof. V P Joseph ,Professor, Christ College (Autonomous), Irinjalakuda and Ms. Anju Sebastian, Assistant Professor, Christ College (Autonomous), Irinjalakuda, and my friends and family for this great support.

Finally, I would like to express my esteemed thanks to every one who helped me directly and indirectly to complete my project.

Date: 4 / 4 / 24

- Jakalumi

Name: LAKSHMI V S Reg No. CCAWMPH025

ABSTRACT

Water pollution is the major environmental issue faced by the world today. Scarcity of pure water deadly affect the life of living beings on the earth. Most of the reasons for water pollution arises from human activities. Many hazardous effluent reaching the water sources are from industries, for example dyes. Dyes are the toxic agents which threat the life of living beings. Very little amount of dye can affect the organisms severely.

Sustainable water treatment strategies includes the removal of endangered contaminants from the water resources. There are ways to remove the contaminants from water. Photocatalytic degradation is a widely accepted technique for removal of dyes. It is very simple, effective, and eco-friendly degradation method which degrade the toxic components completely into water and carbon dioxide and no other secondary toxic byproducts formed. In the past 15 years studies on calcium tungstate as a photocatalyst were extensively done, due to it's characteristics such as high stability, less toxicity and other characteristics.

Photocatalytic degradation of methylene blue dye using $CaWO_4$ as photocatalyst as sunlight as the source of light was studied in this project. Percentage of degradation of photocatalysis using 0.1 molar, 0.2 molar and recycled $CaWO_4$ were compared. $CaWO_4$ was synthesised by precipitation method. Analytical techniques such as XRD, DRS and PL spectroscopy was taken. The antibacterial activity of $CaWO_4$ also validated. This project solely aims at better advancement of society in purification of water.

Contents

1	IN	TROI	DUCTION	1
	1.1	WATER	POLLUTION	1
	1.2	WASTE	WATER TREATMENT METHODS	1
	1.3	РНОТО	CATALYSIS AS WASTE WATER TREATMENT METHOD	2
	1.4	HISTOP	RY OF PHOTOCATALYSIS	4
	1.5	CALCIU	JM TUNGSTATE AS PHOTOCATALYST	5
	1.6	CURRI	ENT WORK	6
2	SY	NTH	ESIS AND CHARACTERISATION	
	OF	CAI	CIUM TUNGSTATE NANO PAR-	
	Or	OAI		_
	TI	CLE		7
	2.1	CALCIU	UM TUNGSTATE	7
	2.2	SYNTH	ESIS OF CALCIUM TUNGSTATE	9
		2.2.1	SYNTHESIS OF NANOMATERIALS	9
		2.2.2	PREPARATION OF CaWO ₄ NANOPARTICLES	10
		2.2.3 I	PREPARATION OF DYE SOLUTION FOR PHOTOCATAL	-
			YSIS	13
	2.3	CHARA	ACTERISATION TECHNIQUES	14
		2.3.1	X-RAY DIFFRACTION	14
		2.3.2	DIFFUSE REFLECTANCE SPECTROSCOPY (DRS)	19
		022 1	PHOTOLUMINESCENCE	21

3	PF	IOT	OCATALYSIS AND ANTIBACTERIA	L
	ST	UDY	ζ į	23
		3.0.1	PHOTOCATALYSIS FOR DYE DEGRADATION	23 24
		3.0.3	FACTORS AFFECTING PHOTOCATALYSIS	26
		3.0.4	ADVANTAGE OF PHOTOCATALYSIS IN WASTE WA-	27
		3.0.5	EXPERIMENTAL TECHNIQUES	27
	3.1	DETE	RMINATION OF ANTIBACTERIAL ACTIVITY	28
		3.1.1	METHODOLOGY	28
4	RE	ESUI	TS AND DISCUSSIONS	30
	4.1	PHOT	OCATALYSIS	30
		4.1.1	DEGRADATION OF MB WITH $CaWO_4$ (0.1 M)	30
		4.1.2	DEGRADATION OF MB WITH RECYCLED $CaWO_4$.	33
		4.1.3	DEGRADATION OF MB WITH $CaWO_4$ (0.2 M)	35
	4.2	ANTI	BACTERIAL STUDY	38
5	CC	ONC	LUSION AND FUTURE ASPECTS	39
	5.1	CONC	LUSION	39
	5.2	FUTU	RE ASPECTS	40

List of Figures

2.1	lonic structure of $CaWO_4$ and bohr models of calcium and tungstate	8
2.2	Mix of Calcium acetate solution and Sodium tungstate solution .	12
2.3	0.1 Molar $CaWO_4$ nano particle and 0.2 Molalr $CaWO_4$ nano particle	13
2.4	X-ray diffractometer	15
2.5	Bragg's law	16
2.6	XRD pattern of $CaWO_4$ of 0.1M and 0.2M	17
2.7	Reflectance curve of $CaWO_4$	19
2.8	Band gap energy of $CaWO_4$	20
2.9	Energy transition in PL	21
2.10	PL spectra of $CaWO_4$	22
3.1	Mechanism of photocatalysis	25
3.2	Experimental setup of photodegradation	28
0.2		
4.1	Samples of Methylene blue degradation with $0.1M CaWO_4 \ldots$	31
4.2	Absorption spectra of methylene blue dye using $CaWO_4$ (0.1 M).	31
4.3	Effective efficiency curve for degradation of methylene blue using	
	$CaWO_4$	32
4.4	Samples of methylene blue degradation with recycled $CaWO_4$	33
4.5	Absorption spectra of methylene blue dye recycled using $CaWO_4$	
	(0.1 M)	34
4.6	Effective efficiency curve of MB with recycled $CaWO_4$	34
47	Methyle blue degradation with 0.2M $CaWO_4$	36
1.8	Absorption spectra of methylene blue dye using recycled $CaWO_4$	
4.0	(0.2 M)	36
10	Effective efficiency curve of MB with 0. 2 M $CaWO_4$	37
4.9	Ellective ellectro	

4.10	Antibacterial activity in	E	coli										38
4.11	Antibactorial	2.	con .	• •	•	•	• •	•	*		•		
	intervacterial activity in	S.	aureus										38

Chapter 1

INTRODUCTION

1.1 WATER POLLUTION

Water is the most important component of life which is necessary for the existence of all living beings. The earth is almost composed of water, that is 71 % of the earth is filled with water[1]. Now the world faces tremendous environmental issues and one of the biggest problems we face is the hazardous wastes contaminating the groundwater. The rapid increase in pollution is due to the growth of population and industries. The pollution can be from the civilian, commercial, and defence sectors. For example, the waste from military installations causes the disposal of wastes in lagoons and it may cause the pollution of groundwater with a variety of hazardous chemicals[15]. Also, the environment is polluted by the toxic effluents from textile industries, agriculture, pharmaceuticals, etc. This will affect the quality of water and thereby the life of human beings.

1.2 WASTE WATER TREATMENT METHODS

One of the major challenges in this 21st century is the availability of clean and safe water. Even though 71 % of the world is filled with water, living beings are suffering from poor water quality. With this growing demand, various strategies are implemented to solve this issue and to yield more water resources. Rainwater harvesting for daily activities and increasing storm-water capturing capacity are

FDTD BASED BEAMFORMING TECHNIQUE USING ARRAY ANTENNAS

Submitted

By

ROSHINI JAYARAJ

CCAWMPH026

Department of Physics Christ College(Autonomous), Irinjalakuda

CALICUT UNIVERSITY APRIL 2024

In partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE IN PHYSICS

CERTIFICATE

This is to certify that the thesis entitled "FDTD BASED BEAMFORMING TECHNIQUE USING ARRAY ANTENNAS" is a bona fide record of the research work carried out by ROSHINI JA-YARAJ (Reg no:CCAWMPH026) in Department of Physics, Christ college (autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of degree of Master of Science in Physics of Calicut University.

Dr. JOSEPH V P PROFESSOR DEPARTMENT OF PHYSICS CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

ERVISOR

Ms.ANJALI JOBY ASSISTANT PROFESSOR DEPARTMENT OF PHYSICS CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

ACKNOWLEDGEMENT

I take this opportunity to express my deep sense of gratitude and to extend my thanks to all the people who have inspired and motivated me during my course and project work.

First and foremost I would thank God for being able to complete this project with success. Expressing my gratitude to my guide and Dr. V P Joseph, Professor, Dept. of Physics and Head of the Dept. of Physics Professor V P ANTO Christ College (autonomous) Irinjalakuda for his valuable guidance, encouragement, timely advice, immense patience and as a constant source of inspiration for choosing the right path. I am thankful to my co-guide Ms. ANJALI JOBY for the valuable help at every stage of my work right from the starting of the work till the completion of my project.

I am also grateful to my mentor Mrs.Anju Sebastian for her sincere guidance.

Also i am grateful to my team mates and non-teaching staffs of the Department of Physics, Christ College Irinjalakuda, for their direct and indirect support and encouragement during the execution of my project.

I am indebted to my family for their constant source of inspiration.

Date: 05/04/2024

ROSHINI JAYARAJ Reg N0. CCAWMPH026

ABSTRACT

Antenna arrays have a long history of more than 100 years and have evolved closely with the development of electronic and information technologies, playing an indispensable role in wireless communications and radar. To support the ever-increasing demand on connectivity and datarates, multiple beam antennas are identified as a critical technology for the fifth generation (5G), the sixth generation (6G) and more generally beyond 5G (B5G) wireless communication links in both terrestrial networks and non-terrestrial networks. With the rapid development of electronic and information technologies, the demand for all-time, all-domain, and full-space network services has exploded, and new communication requirements have been put forward on various space/air/ground platforms. To meet the ever increasing requirements of the future sixth generation (6G) wireless communications, such as high capacity, wide coverage, low latency, and strong robustness, it is promising to employ different types of antenna arrays (e.g., phased arrays, digital arrays, and reconfigurable intelligent surfaces, etc.) with various beamforming technologies (e.g., analog beamforming, digital beamforming, hybrid beamforming, and passive beamforming, etc.) in space/air/ground communication networks, bringing in advantages such as considerable antenna gains, multiplexing gains, and diversity gains. However, enabling antenna array for space/air/ground communication networks poses specific, distinctive and tricky challenges, which has aroused extensive research attention. In this thesis, the principle of operation, design, and implementation of multiple beamforming networks are discussed. The suitability of these sub-systems for 5 G and 6G antenna arrays is reviewed. Major technologies and future works are highlighted.

Contents

1	IN	TRODUCTION	1
	1.1	METAMATERIALS	1
	1.2	ARTIFICIAL NEGATIVE PERMITTIVITY AND PERMEABIL-	
		ITY MEDIUM	3
	1.3	NEGATIVE REFRACTIVE INDEX MEDIUM	4
2	FD'	ГD	5
	2.1	FUNDAMENTAL CONCEPTS OF ELECTRODYNAMICS	6
		2.1.1 Maxwell's equation:	6
		2.1.2 Boundary conditions:	7
		2.1.3 Mathematical development	8
		2.1.4 The Yee algorithm	10
3	AN	TENNA ARRAY	14
	3.1	PHASED ARRAY	16
	3.2	BEAM FORMING	17
4	BE	AMFORMING IN 5G and 6G	21
	4.1	5th GENERATION	21
	4.2	DIRECTION OF BEAM	22
	4.3	6G ANTENNA / BEAMFORMING	24
5	PR	OGRAM AND RESULTS	27
Ŭ	51	RADIATION PROGRAM	27
	0.1	5.1.1 Algorithm for simulation program in matlab	27
	5.2	PHASED ARRAY ANTENNA	29

	5.3 BI	LAMFORING	31
	5.3	Algorithm for simulation program in matlab	31
6	CON	ICLUSION	41
	6.1 CC	DNCLUSION	41
	6.2 FU	JTURE WORKS	42

List of Figures

2.1	Position of electric and magnetic field vector component about unit	
	cell of the yee algorithm	12
3.1	Arrangement of linear array of n isotropic point sources	15
3.2	Varying the signal delay to each element shifts the individual wave-	
	fronts produced, which steers the beam. All the individual wave-	
	fronts combine to create a single wavefront propagating in the di-	
	rection of the main beam from the antenna	17
3.3	Phased array configurations and their associated radiation patterns	
	simulated in PathWave System Design software grouped by com-	
	mon industry applications	20
3.4	An example of an eight-by-eight array beam pattern with elements	
	at incrementally increasing element separation (left to right) in-	
	creasing the effective crosssection area "A" of the array, yielding	
	higher gain and narrower directivity	20
4.1	Three-dimensional gain patterns for six gain patterns from the 8x8	
	array for phasing set to direct the beam to $(0^{\circ}, 90^{\circ})$ to $(50^{\circ}, 90^{\circ})$ in	
	10-degree increments.FA	22
42	5G NR Beam Management and Beam Scheduling	23
1.2	Different users	23
4.0	6C digital beamforming	25
4.4	Corrier aggregation	26
4.5		
5.1	elements linearly arranged in 1 axis	20
5.2	elemets arranged linearly in j axis	20

5.3	7 elemennts with amplitude 1/2 1 2 4 2 1 1/2	29
5.4	elements with amplitude $1/2, 1, 4, 8, 4, 1, 1/2$	29
5.5	Change the phase of 7th element-pi 6th element-pi /2 5th element-	
	pi/4	30
5.6	Change the phase of 7th element-2*pi.6th-pi.5th-pi/2.4th-pi/4.3rd-	
	pi/8	30
5.7	Scatter plot of charge Q v/s respective angles P	33
5.8	Polar plot:Displaying amplitude of the wave at specific angles	33
5.9	scattering plot: Gives amplitude for elements as $1/2, 1, 2, 4, 2, 1, 1/2$.	34
5.10	polar plot:Gives amplitude for elements as 1/2,1,2,4,2,1,1/2	.34
5.11	Scattering plot: Gives amplitude for elements as 1,1,4,8,4,1,1	35
5.12	polar plot: Gives amplitude for elements as 1,1,4,8,4,1,1	35
5.13	Scattering plot: Gives amplitude for elements as $1/2, 2, 4, 8, 4, 2, 1/2$	36
5.14	polar plot: Gives amplitude for elements as $1/2, 2, 4, 8, 4, 2, 1/2$	36
5.15	Scattering plot:change the phase of the elements as 0,0,0,0,pi/4,pi/2,pi	i
		37
5.16	polar plot:change the phase of the elements as 0,0,0,0,pi/4,pi/2,pi	37
5.17	Scattering plot:change the phase of the elements as 0,0,0,pi/4,pi/2,pi,2	2*pi
		38
5.18	polar plot:change the phase of the elements as 0,0,0,pi/4,pi/2,pi,2*pi	
		38
5 19	Scattering plot:change the phase of the elements as 0,0,0,0,2*pi,0,2*pi	i
0.10		39
5 20	polar plot change the phase of the elements as $0,0,0,0,2*pi,0,2*pi$.	39
5.20	Scattering plot: change the phase of the elements as $0,0,2^*$ pi $,0,0,0,2^*$ p	i
5.21	Deattering Incommendent i	40
	$h_{\rm ex}$ = let change the phase of the elements as $0,0,2^*{\rm pi},0,0,0,2^*{\rm pi}$	40
5.22	polar plot:change the phase of the creation of the	

Chapter 1

INTRODUCTION

1.1 METAMATERIALS

Metamaterials are artificially fabricated materials in nanoscale or microscale, that have extraordinary kind of electromagnetic properties that showing negative values for refractive index n. They are also called metamaterial if one parameter show negative value. There is no exact definition for metamaterials. The word metamaterial arise from a Greek word meta, meaning "beyond" and Latin word materia, meaning "matter" or "material". The term metametrial was introduced by Rodger M. Waitser in 2011. It consist of assembly of multiple discrete constituents called meta atoms, which can be considered as artificial atoms. They are constructed from materials such as plastics, metals etc. with befitting capacitive and inductive characteristics. They are arranged in periodic arrays at scale smaller than the wavelength of the phenomena observed. All naturally occurring materials such as gold, diamond, glass etc. They are called Negative Index Materials(NIM) or Double Negative Media(DNG) and later one called as Single Negative (SNG) medium. The behaviour of materials to electromagnetic waves depends on it's value of permittivity and permeability. In case of metamaterials when we substitute the negative values of both parameters in the four Maxwell equations, we get a left handed triplet of electric field, magnetic field and phase vector(k), but in case of normal materials it is a right handed triplet. Here the phase vector and and poynting vector are in opposite direction. As a result the wave flows in backward direction in case of metamaterials. The benefit of metamaterials over

Radio Spectral Studies in a Selected Sample of FR-II Galaxies of Linear Size 0-100 Kpc Using NASA/IPAC Extragalactic Database

Submitted By

SHREYA JAYAPRAKASH

Reg No: CCAWMPH027

Post Graduate Department of Physics Christ College(Autonomous), Irinjalakuda

UNIVERSITY OF CALICUT APRIL 2024

In partial fulfilment of the requirements for the Degree of

MASTER OF SCIENCE IN PHYSICS

Under the guidance of Dr. Biju.K.G Associate Professor Department of Physics WMO Arts and Science college, Muttil,Wayanad.

CERTIFICATE

This is to certify that the work incorporated in the project report entitled "Radio Spectral Studies in a selected Sample of FR-II Galaxies of Linear Size 0-100 Kpc Using NASA/IPAC Extragalactic Database", which is being submitted herewith for the partial fulfilment of the requirements for the award of the degree of Master of Science in Physics, at the Department of Physics, Christ College (Autonomous), Irinjalakuda, University of Calicut, is the result of original work carried out by SHREYA JAYAPRAKASH (Reg No. CCAWMPH027) under my guidance and supervision. To the best of my knowledge and belief, the work embodied in this thesis has not formed the basis of any degree or similar title to this thesis or any other university or examining body.

Dr. Biju.K.G

Place : Muttil Date : 01/04/2024 Dr. Biju.K.G Associate Professor WMO Arts and Science College Muttil, Wayanad

CERTIFICATE

This is to certify that the work incorporated in the project report entitled "Radio Spectral Studies in a selected Sample of FR-II Galaxies of Linear Size 0-100 Kpc Using NASA/IPAC Extragalactic Database", which is being submitted by SHREYA JAYAPRAKASH (Reg No. CCAWMPH027) at the Department of Physics, Christ College(Autonomous), Irinjalakuda, University of Calicut, is based on the investigation carried out by her under the guidance of Dr.Biju.K.G, Associate Professor, Department of Physics, WMO Arts and Science College, Muttil, Wayanad.

In

Dr. V.P.Joseph Professor Department of Physics Coordinator, MSc Program Christ College (Autonomous) Irinjalakuda, Thrissur

Place : Irinjalakuda Date : 04/04/2024

DECLARATION

I, SHREYA JAYAPRAKASH, hereby declare that the project work entitled "Radio spectral Studies in a selected Sample of FR-II Galaxies of Linear Size 0-100 Kpc Using NASA/IPAC Extragalactic Database", submitted at the Department of Physics, Christ College(Autonomous), Irinjalakuda, University of Calicut for the partial fulfilment of the award of Degree of Master of Science in Physics is an authentic record of my own work carried out under the guidance of Dr.Biju.K.G, Associate Professor, Department of Physics, WMO Arts and Science College, Muttil, Wayanad. I further declare that any part of this work has not been submitted to any other university or institution as a part of any other degree requirement, to the best of my knowledge.

Place : Irinjalakuda Date :04/04/2024 SHREYA JAYAPRAKASH Reg No. CCAWMPH027

ACKNOWLEDGEMENT

I am highly indebted to my guide, Dr. BIJU.K.G, Associate Professor, Department of physics, WMO Arts and Science College, Muttil, Wayanad for his wholehearted and dedicated support,guidance and help, in the fulfillment of this project.

I would like to thank the God Almighty for keeping us sound healthy throughout the successful completion of this project.

I would like to express my sincere gratitude to my mentor ANJU SEBASTIAN, Assistant Professor, and our coordinator Dr. V P JOSEPH, Professor, Department of Physics, Christ College (Autonomous), Irinjalakuda for their constant inspiration and support. I am grateful to V P ANTO sir, Head of the Department of Physics, Irinjalakuda, all teaching and non-teaching staffs of Christ College for their inspiration and support.

Also, I am extremely indebted to my parents and friends for their encouragement throughout the preparation of this project.

I once again extent my sincere gratitude to all those who have directly and indirectly helped me during this project.

ABSTRACT

In this project, we searched for a potential correlation between spectral index and galactic parameters like linear size and red-shift in a sample of FR-II Galaxies within a linear size range of 0-100 Kpc (based on APPENDIX A: CATA-LOGUE OF THE CAMBRIDGE-SDSS FR-II RADIO GALAXIES). A comprehensive analysis was conducted on 68 radio sources using data obtained from the NASA IPAC/ NED database and the corresponding plots were traced with Python pandas module. The research findings indicate no significant correlation between the calculated spectral index and either of the parameters such as linear size and red shift.

Contents

1	Introduction to Astronomy			
	1.1	Galaxi	es	1
		1.1.1	Classification	2
	1.2	Active	Galactic Nuclei	5
		1.2.1	Classification	5
2	Rad	dio Galaxies		
	2.1	Emissi	ion	8
	2.2	Classif	fication	9
		2.2.1	Fanaroff Riley 1 Galaxy	9
		2.2.2	Fanaroff Riley 2 Galaxy	10
	2.3	Galact	tic parameters	11
		2.3.1	Right ascension	11
		2.3.2	Declination	11
		2.3.3	Linear Size	11
		2.3.4	Red shift	11
		2.3.5	Spectral index	12
	2.4	Refere	ence paper	13
3	NA	SA/IP	AC Extragalactic Database	15
4	Me	fethodology 1 Pandas module		
	4.1			
	4.1.1 Linear regression program to find the spectral index \ldots			19
	4.2	Plots	of Linear size vs Flux density (0-50 Kpc)	20
		4.2.1	Object Name: 4C+03.32 NED01	21

	4.2.2	Object Name: 4C+22.33	22
	4.2.3	Object Name: B2 1323+37	22
	4.2.4	Object Name: LOFAR J125723.65+273016.1	23
	4.2.5	Object Name: MCG+09-19-211	23
	4.2.6	Object Name: NGC 4839	24
	4.2.7	Object Name: NGC 5141	24
	4.2.8	Object Name: NGC 5352	25
	4.2.9	Object Name: NVSS J120634+221525	25
	4.2.10	Object Name: WISEA J113643.47+545447.0	26
	4.2.11	Object Name: WISEA J131945.32+603043.1	26
	4.2.12	Object Name: FIRST J074536.5+335739	27
4.3	Plots o	of Linear size vs Flux density (50-100 Kpc)	27
	4.3.1	Object Name: 2MASS J08185409+2247448	28
	4.3.2	Object Name: 2MASX J08185411+2247443	28
	4.3.3	Object Name: 2MASX J13522273+6153370	29
	4.3.4	Object Name: 3C 138	29
	4.3.5	Object Name: 4C +00.05	30
	4.3.6	Object Name: 4C +06.39	30
	4.3.7	Object Name: 4C +38.23	31
	4.3.8	Object Name: 87GB 075139.5+521323	31
	4.3.9	Object Name: 87GB 080956.2+530653	32
	4.3.10	Object Name: 87GB 085721.7+512220	32
	4.3.11	Object Name: 87GB 132358.5+543323	33
	4.3.12	Object Name: 87GB 134359.5+362320	33
	4.3.13	Object Name: 87GB 140359.6+600020	34
	4.3.14	Object Name: B2 0812+38	34
	4.3.15	Object Name: B2 0913+38	35
	4.3.16	Object Name: B2 1033+36	35
	4.3.17	Object Name: B2 1204+34	36
	4.3.18	Object Name: B2 1237+38	36
	4.3.19	Object Name: B2 1332+38	37
	4.3.20	Object Name: B2 1539+35	37
	4.3.21	Object Name: B3 0755+379A	38

4.3.22	Object Name: B3 0814+451	38
4.3.23	Object Name: B3 0827+438	39
4.3.24	Object Name: B3 1019+451	39
4.3.25	Object Name: B3 1042+475	40
4.3.26	Object Name: B3 1218+421	40
4.3.27	Object Name: B3 1412+410	41
4.3.28	Object Name: B3 1457+414	41
4.3.29	Object Name: B3 1538+425	42
4.3.30	Object Name: B3 1540+476	42
4.3.31	Object Name: CGCG 150-014	43
4.3.32	Object Name: CGCG 183-022	43
4.3.33	Object Name: Coma A	44
4.3.34	Object Name: FIRST J154059.4+345216	44
4.3.35	Object Name: LRG J125411.67+273732.7	45
4.3.36	Object Name: MRC 1216+061A	45
4.3.37	Object Name: NGC 2484	46
4.3.38	Object Name: NGC 4261	46
4.3.39	Object Name: NVSS J141418+405226	47
4.3.40	Object Name: NVSS J145939+411758	47
4.3.41	Object Name: NVSS J160817+315046	48
4.3.42	Object Name: SDSS J153557.72+512552.6	48
4.3.43	Object Name: UGC 08782	49
4.3.44	Object Name: VLSS J1334.9+5843	49
4.3.45	Object Name: WISEA J084803.34+580948.4	50
4.3.46	6 Object Name: WISEA J112839.51+564017.3	50
4.3.47	' Object Name: WISEA J134541.65+312406.6	51
4.3.48	3 Object Name: WISEA J142644.07+493237.7	51
4.3.49) Object Name: WISEA J153218.95+493756.2	52
4.3.50) Object Name: WISEA J153557.63+512530.8	52
4.3.51	l Object Name: NVSS J134616+360900	53
4.3.52	2 Object Name: MCG +05-21-006	53
4.3.53	3 Object Name: B3 0727+450	54
4.3.54	4 Object Name: 87GB 153427.2+513530	54

	4.4	4.3.55Object Name: (HB89)0235+1644.3.56Object Name: 87GB 131813.0+490908Designations of Catalogue in the Names of Galaxies	55 55 56			
5	Res	esults and Discussions				
	5.1	Observed data for Linear size range 0.50 Kpc	50			
	5.2	Observed data for Linear size and 50 100 Kpc	58			
	5.3	Consolidated Plate 1. (59			
	5.0 E 4	Constituted Flots between Linear Size and Spectral index	60			
	5.4	Consolidated Plots between Red shift and Spectral index	62			
	5.5	Conclusion	63			