BREAST CANCER PREDICTION USING MACHINE LEARNING

Project report submitted to Christ College (Autonomous) in partial

fulfilment of the requirement for the award of M.Sc.Degree

programme in Statistics

by

AISWARYA P S

Register No.CCAWMST001

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

CERTIFICATE

This is to certify that the project entitled 'BREAST CANCER PRE-DICTION USING MACHINE LEARNING', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by AISWARYA P S (CCAWMST001) during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2024.

Ms.Mary Priya

Assistant Professor Department of Statistics Christ College (Autonomous) Irinjalakuda

Antony M Dr.Da

Head, Department of Statistics (Self Financing) Christ College (Autonomous) Irinjalakuda

External Examiner: Spliters Soulcarm. le'll of Place: Minjalakuda

29-06-2024 Date:

DECLARATION

I hereby declare that the matter embodied in the project entitled 'BREAST CANCER PREDICTION USING MACHINE LEARNING', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidance and Supervision of Ms.Mary Priya, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2024.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associate ship, fellowship etc. of any other university or institution.

Irinjalakuda

AISWARYA P S

Date: 29-06-2024

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and help of several individuals who in various ways contributed and extended their valuable assistance during the preparation and completion of the study.

I would like to express my sincere gratitude to Ms.Mary Priya, Assistant Professor, Department of Statistics, Christ College (Autonomous), Irinjalakuda. Her invaluable guidance and encouragement have been instrumental in the successful completion of this project.

I would like to express my deep appreciation to Dr. Davis Antony M, Head of Department of Statistics, and my teachers for their continuous support and expert guidance.

I sincerely thank the librarian and non-teaching staff of Christ College (Autonomous), Irinjalakuda.I am very thankful to my classmates for their support and help.

I am deeply grateful to my parents for their unconditional love and support. Above all, I thank God for blessing me and helping me complete this work.

Irinjalakuda

AISWARYA P S

Date: 29-06-2024

Contents

1	Introduction		
	1.1	Risk Factors For Breast Cancer	9
	1.2	Software Used	12
	1.3	Objectives	12
2	Me	thodology	13
	2.1	Exploratory Data Analysis	13
	2.2	Logistic Regression	15
		2.2.1 Types Of Logistic Regression	16
		2.2.2 Assumptions Of Logistic Regression	. 16
	2.3	Decision Tree Classifier	. 18
		2.3.1 Types Of Decision Tree Classifier	. 18

		2.3.2	Assumptions Of Decision Tree Classifier	20
	2.4	Rando	nn Forest Classifier	22
		2.4.1	Types Of Random Forest Classifier	22
		2.4.2	Assumptions Of Random Forest Classifier	23
	2.5	Confu	sion Matrix	25
		2.5.1	True Positives (TP)	2 5
		2.5.2	True Negatives (TN)	25
		2.5.3	False Positives (FP)	26
		2.5.4	False Negatives (FN)	26
		2.5.5	Accuracy	26
		2.5.6	Precision	27
		2 <mark>.5</mark> .7	Recall	27
		2.5.8	F1 Score	27
	_			29
3	Dat	a Ana	lysis	
	3.1	Data		. 29
	3.2	Handl	ling Missing Values	. 31

3.3	Visualization Of Output Variable
3.4	Correlation matrix
3.5	Splitting Dataset
3.6	Logistic Regression Model
3.7	Decision Tree Classification Model
3.8	Random Forest Classification Model

4 Conclusion

References

List of Figures

3.1	Null Value	
3.2	Malignant vs Benign Count Plot	
3.3	Correlation Heatmap	
3.4	Logistic Regression Model 35	
3.5	Confusion Matrix-Logistic	
3.6	Decision Tree Classification Model	
3.7	Confusion Matrix- Decision Tree	i,
3.8	Randsom Forest Classification Model	ĩ
3.9	Confusion Matrix- Random Forest	7

A STUDY ON INDIAN AND GLOBAL STOCK MARKETS

Project report submitted to Christ College (Autonomous) in partial

fulfilment of the requirement for the award of M.Sc. Degree

programme in Statistics

by

ALWIN P P

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

 $\mathbf{2024}$

CERTIFICATE

This is to certify that the project entitled 'A STUDY ON INDIAN AND GLOBAL STOCK MARKETS ', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by ALWIN P P(CCAWMST002) during the period of his study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2024.

Linett George

Assistant Professor Department of Statistics Christ College (Autonomous) Irinjalakuda Dr.Davis Antony M

Head , Department of Statistics (Self Financing) Christ College (Autonomous)

Irinjalakuda

External Examiner:

Place: Irinjala kuda Date: 29/06/2024

Althruss Dr. Soviet (1)

DECLARATION

I hereby declare that the matter embodied in the project entitled 'A STUDY ON INDIAN AND GLOBAL STOCK MARKETS ', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidance and Supervision of Linett George, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2024.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associate ship, fellowship etc. of any other university or institution.

Irinjalakuda

ALWIN P P

Date: 29/06/2024

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Linett George , Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda Date: 29/06/2024

ALWIN P P

Contents

1	Inti	roduction	8	
2	Met	hodology		
	2.1	Artificial Neural Network	13	6
		2.1.1 Multi-layer Perceptron(MLP) Neural Network	15	5
	2.2	Activation Function	1'	7
	2.3	Loss Function	1	7
	2.4	Forward Propagation	1	8
	2.5	Back Propagation		19
	2.6	Hyperparameter Tuning	•	19
	2.7	Pearson Correlation Coefficient	•	20
	2.8	Scatter Plot		21

3 Data Analysis

	3.1	Time	Series Plots	22
	3.2	Scatte	r Plots	26
	3.3	Pearse	on Correlation Coefficient	29
	3.4	Foreca	sting Using Multilayer Neural Network	32
		3.4.1	Forecasting Of Sensex	32
		3.4.2	Forecasting Of Nifty-50	35
		3.4.3	Forecasting Of NYSE Composite Index	37
4	Cor	iclusio	n	39

References

List of Figures

2.1	Single Layer Artificial Neural Network	
2.2	Multi Layer Neural Network	
3.1	Time Series Plot of Sensex	
3.2	Time Series Plot of Nifty-50	
3.3	Time Series Plot of NYSE Composite Index)
3.4	Scatter Plot of Indian Stock Market Indices	5
3.5	Scatter Plot between Nifty-50 and NYSE Composite Indices . 27	7
3.6	Scatter Plot between Sensex and NYSE Composite Indices 28	3
3.7	Correlation Heatmap)
3.8	Forecasted Closing Price of Sensex	3
3.9	Forecasted Closing Price of Nifty-50	5

REVIEW ON FRECHET DISTRIBUTION AND IT'S GENERALISATIONS

Dissertation report submitted to Christ College (Autonomous) in partial

fulfilment of the requirement for the award of M.Sc. Degree

programme in Statistics

by

ARIFA A S

Register No.CCAWMST003

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

CERTIFICATE

This is to certify that the project entitled 'REVIEW ON FRECHET DISTRIBUTION AND IT'S GENERALISATIONS', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by ARIFA A S(CCAWMST003) during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2024.

Geethu Gopinath

Assistant Professor Department of Statistics Christ College (Autonomous) Irinjalakuda

50085M (

External Examiner: A Place: Irinjalakuda Date: 29-06-2024

Dr. Davis Mundassery Head, Department of Statistics (Self Financing) Christ College (Autonomous) Irinjalakuda

DECLARATION

I hereby declare that the matter embodied in the project entitled ' RE-VIEW ON FRECHET DISTRIBUTION AND IT'S GENERALISATIONS', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidance and Supervision of Dr. Davis Antony Mundassery, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2021-2023.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associate ship, fellowship etc. of any other university or institution.

Irinjalakuda

ARIFA A S

Date: 29-06-2024

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Dr. Davis Antony Mundassery, Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date: 29-06-2024

ARIFA A S

Contents

1	IN'	TRODUCTION	8
	1.1	Background and Motivation	8
	1.2	Objective	9
2	EX	TREME VALUE DISTRIBUTIONS(EVDs)	10
	2.1	Types of Extreme Value Distributions	12
		2.1.1 Gumbel Distribution (Type I)	12
		2.1.2 Weibull Distribution (Type III)	13
		2.1.3 Fréchet Distribution (Type II)	15
3	OD	D FRECHET G FAMILY DISTRIBUTIONS	19
	3.1	Introduction	19

	3.1.1	Odds Ratio and Formation of the Odd Fréchet-G Family 20	,
	3.1.2	PDF, CDF, and Hazard Function	,
3.2	Mome	nts and Moment Generating Function of the Odd Fréchet	
	Distril	Dution	the state of
	3.2.1	Moments of the Odd Fréchet Distribution	and a state of the second
	3.2.2	Moment Generating Function (mgf) of the Odd Fréchet	
		Distribution	
	3.2.3	Order statistics	
3.3	Specia	al Cases of OFr-G Distribution	
	3.3.1	Odd Frechet-Weibull (OFr-W) Distribution	
	3.3.2	Odd Frechet-Lomax (OFr-L) Distribution	
	3.3.3	Odd Frechet-Gamma (OFr-Gam) Distribution 30	
	3.3.4	Odd Frechet-Nadarajah Haghighi(OF-NH)	
4 E	XTENI	DED ODD FRECHET G FAMILY DISTRIBUTIONS	30
- D	ALLIN	Letion	
4.	1 Intro		
	4.1.1	Cumulative Distribution Function (CDF)	
	4.1.2	Probability Density Function (PDF)	

4.2	Proper	ties of the Extended Odd Fréchet-G Family of Distri-	
	bution	s	40
	4.2.1	Moments	40
	4.2.2	Moment Generating Function (MGF)	40
	4.2.3	Order Statistics	41
	4.2.4	Quantile Function	41
	4.2.5	Generating Function	41
	4.2.6	Order Statistics	42
4.3	Speci	al Distributions of EOF-G family	43
	4.3.1	EOF-Nadarajah-Haghighi (EOFNH) Distribution	43
	4.3.2	EOF-Weibull (EOFW) Distribution.	44
4.4	4 simu	lation and fitting of data	45
5 C	ONCL	USION	48
6 R	EFER	ENCE	50
7 A	PPEN	DIX	52

List of Figures

3.1	PDF of Weibull, OF-W	27
3.2	PDF of Gamma, OFr-Gamma	32
3.3	PDF of NH,OFr-NH	35
4.1	PDF of EOF-NH,EOF-W	45

A STUDY ON E VALUE AND ITS SIGNIFICANCE

Dissertation report submitted to Christ College (Autonomous) in partial

fulfilment of the requirement for the award of M.Sc. Degree

programme in Statistics

by

MALAVIKA P

Register No.CCAWMST005

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

CERTIFICATE

This is to certify that the dissertation entitled 'A STUDY ON E VALUE AND ITS SIGNIFICANCE', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by MALAVIKA P(CCAWMST005) during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2024.

Megha C M Assistant Professor Department of Statistics Christ College (Autonomous) Irinjalakuda

Man

Dr.Davis Antony M

Head Department of Statistics Christ College (Autonomous)

Irinjalakuda

External Examiner:

Handrey (, B

Place: IRINJALAKUDA

Date: 29-06-2024

DECLARATION

I hereby declare that the matter embodied in the dissertation entitled ' A STUDY ON E VALUE AND ITS SIGNIFICANCE ', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidance and Supervision of Megha C M, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2024.

I also declare that this dissertation has not been previously formed the basis for the award of any degree, diploma, associate ship, fellowship etc. of any other university or institution.

Irinjalakuda

Malewika.

Date: 29-06-2024

MALAVIKA P

ACKNOWLEDGEMENT

This dissertation would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Megha C M , Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:

MALAVIKA P

Contents

1	Inti	roduction	6	
2	A P	A Prelude to E values		
	2.1	Definition of E values	10	
	2.2	Difference between e-value and p-value	13	
	2.3	Merging of e values and their application in multiple testing		
		of hypothesis	15	
		2.3.1 Advantage of applying merged e values in multiple hy-		
		pothesis testing	18	
3	ЕΊ	ESTING	21	
	3.1	General principles of e testing	22	
	3.2	Non parametric e testing	24	

		3.2.1	Fisher type non parametric e test	24
	3.3	Sign e	test	26
		3.3.1	Sign e test	26
4	FIT	TING	OF SIGN TEST AND SIGN E TEST ON CHER-	
	NO	BYL I	DATA	29
		4.0.1	Fitting of sign test to Chernobyl data	29
		4.0.2	Fitting of sign e test to Chernobyl data	30
5	CO	NCLU	SION	31
6	Ref	erence	s	37

BIRCH CLUSTERING

Dissertation report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Statistics

by

NAMRUTHA T U

Register No.CCAWMST006

Department of Statistics Christ College (Autonomous) Irinjalakuda 2024

CERTIFICATE

This is to certify that the project entitled "BIRCH CLUSTERING " submitted to Department of Statistics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Statistics, is a bonafide record of original research work done by NAMRUTHA T U (CCAWMST006) during the period of her study in the Department of Statistics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2024

Mrs.MEGHA C M Assistant Professor Department of statistics Christ College (Autonomous) Irinjalakuda

Davis Antony M

Head. Department of Statistics(Self Financing) Christ College (Autonomous) Irinjalakuda

External Examiner : $\int dt h dt h dt$ Place : Irinjalakuda Date : 29062024

DECLARATION

I hereby declare that the project work entitled " **BIRCH CLUSTERING**" submitted to Department of Statistics, Christ College(Autonomous), Irinjalakuda in partial fulfillment of the requirement for the award of Master Degree of Science in Statistics is a record of original project work done by me during the period of my study in the Department of Statistics, Christ College(Autonomous), Irinjalakuda and under the supervision of Megha C M, Assistant Professer, Department of Statistics, Christ College(autonomous), Irinjalakuda

NAMRUTHA T U

Place : Irinjalakuda Date : 29062024

AKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest gratitude to my guide Mrs.Megha C M, Assistant Professor, Department of Statistics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project.Without her advice, support and guidance, it find difficult to complete this work. I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "BIRCH CLUSTERING".

I mark my word of gratitude to Dr.Davis Mundassery, Head of the Department and all other teachers of the department for providing me the necessary facilities to complete this project on time.

I want to especially thank all the faculty of the library for providing various facilities for this project. Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

NAMRUTHA T U

Contents

In	Introduction			
1	PR	PRELIMINARIES		
	1.1	Introduction	9	
	1.2	Clustering	9	
		1.2.1 The primary uses of clustering algorithms	11	
		1.2.2 Dendrogram	13	
2	CL	USTERING ALGORITHMS	16	
	2.1	K-Means Clustering	16	
		2.1.1 Working Of K Means Clustering	18	
		2.1.2 Limitations	19	
	2.2 Hierarchical Clustering			

		2.2.1	Hierarchical Agglomerative Clustering	20
		2.2.2	Hierarchical Divisive clustering	21
		2.2.3	Limitations	22
	2.3	DBSC	AN (Density-Based Spatial Clustering of Appli-	
		cation	s with Noise)	22
		2.3.1	Steps used in DBSCAN Algorithm	22
		2.3.2	Limitations	23
	2.4	Mean	Shift	23
		2.4.1	The process of mean-shift clustering algorithm	
			can be summarized as follows	24
		2.4.2	Limitations	25
	2.5	Gaussi	ian Mixture Models (GMM)	26
		2.5.1	Limitations	26
		2.5.2	The Clustering Algorithms challenges	27
~	DID		LIGTEDIALO	20
3	BIR	CH C	LUSTERING	30
		3.0.1	Key Concepts	32
		3.0.2	Advantages	34

	3.0.3	Limitations	36
	3.0.4	Real-World Applications	38
4	METHOD	OLOGY	41
	4.0.1	Steps in BIRCH Clustering	41
	4.0.2	Basic Algorithm	42
	4.0.3	Parameters of BIRCH Algorithm	44
	4.0.4	Clustering Metrics in Machine Learning	45
5	PRACTIC	CAL APPLICATION OF BIRCH CLUSTE	R-
	ING USI	NG PYTHON	46
	5.1 Gener	rating data and applying birch clustering \ldots .	47
	5.2 Scatt	er Plot	. 54
6	REFERE	NCES	5
List of Figures

A STUDY ON MARKOV CHAIN MONTE CARLO METHODS

Dissertation report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Statistics

by

PARVATHY GOPALAKRISHNAN

Register No.CCAWMST007

Department of Statistics Christ College (Autonomous) Irinjalakuda 2024

CERTIFICATE

This is to certify that the project entitled "A STUDY ON MARKOV CHAIN MONTE CARLO METHODS " submitted to Department of Statistics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Statistics, is a bonafide record of original research work done by Ms.PARVATHY GOPALAKRISHNAN (CCAWMST007) during the period of her study in the Department of Statistics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2024

Mrs.Mary Assistant Professor Department of statistics Christ College (Autonomous) Irinjalakuda

Place : Irinjalakuda

Date : 29-06-2024

External Examiner : Apthone Con

Dr.Day ntony M Head. Department of statistics Christ College (Autonomous) Irinjalakuda

IRIKUALAKUDA

DECLARATION

I hereby declare that the project work entitled "A STUDY ON MARKOV CHAIN MONTE CARLO METHODS" submitted to the Department of Statistics, Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Statistics is a record of original project work done by me during the period of my study in the Department of Statistics, Christ College(Autonomous), Irinjalakuda and under the supervision of Marypriya, Assistant Professor, Department of Statistics, Christ College(Autonomous), Irinjalakuda.

PARVATHY GOPALAKRISHNAN

Place : Irinjalakuda Date : 29-06-2024

AKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest gratitude to my guide Mrs.Marypriya, Assistant Professor, Department of Statistics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project.Without her advice, support and guidance, it find difficult to complete this work. I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "A STUDY ON MARKOV CHAIN MONTE CARLO METHODS".

I mark my word of gratitude to Dr.Davis Antony M, Head of the Department and all other teachers of the department for providing me the necessary facilities to complete this project on time.

I want to especially thank all the faculty of the library for providing various facilities for this project. Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

PARVATHY GOPALAKRISHNAN

Contents

Introduction	5
1 PRELIMINARIES	8
1.1 Markov chain	8
1.1.1 Definition	8
1.1.2 Application	9
1.2 Monte Carlo Method	10
1.2.1 Monte Carlo technique	11
1.2.2 Monte Carlo approximation	12
1.2.3 Monte Carlo integration	12
1.2.4 Algorithm	13
1.2.5 Advantages and Disadvantages	14
1.2.6 Application	15
ARKOV CHAIN MONTE CARLO METHOD	

2 N CARLO METHOD 17

	18
2.1 MCMC method	20
2.1.1 Working of MCMC method	23
2.2 Diagnostics Of MCMC Method	23
2.2.1 Priciple behind MCMC diagnostice 7	24
2.2.2 Diagnostics techniques	27
2.3 Advantages and Disadvantages	28
2.4 Applications	20
2.5 Types of MCMC method	29
3 METROPOLIS - HASTING ALGORITHM	30
3.1 MH algorithm	31
3.1.1 Practical implementation	32
3.2 Advantages and Disadvantages	33
3.3 Applications	36
3.4 Variations of MH algorithm	36
4 GIBBS SAMPLING	38
4.1 Gibbs sampling	39
4.1.1 Working of Gibbs sampling	40
4.2 Advantages and Disadvantages	40
4.3 Applications:	
14 Enter :	43
4.4 Extensions	44

MCMC METH-	
TANCE TO OTHER MONT	46
5 A SMALL GLARCE	46
ODS	46
5.1 Hammen 5.2 Slice Sampling	47
5.3 Gaussian Process MCMC (GI MC	
TON OF MH ALGO-	
6 PRACTICAL IMPLEMENTATION	49
RITHM AND GIBBS SAIMI DIT	pilis-
6.1 Sampling from bivariate normal distribution using	50
Hasting algorithm	
6.2 Sampling from bivariate normal distribution using Gibbs	52
compling algorithm	
6.3 Scatter plots and Trace plots of MH and Gibbs algo-	
0.0 200000 1	54
rithms	~ .
6.3.1 Scatter Plots	54
6.3.2 Trace Plots	. 56
	58

References

List of Figures

0.1	Seatter plot of MH algorithm	54
6.1	Scatter plot of will algorithm	55
6.2	Scatter plot of Gibbs sampling	
63	Trace plot of MH algorithm	56
0.0	Trace prot of the O	57
6.4	Trace plot of Gibbs sampling	

GOLD PRICE PREDICTION USING MACHINE LEARNING ALGORITHMS

Project report submitted to Christ College (Autonomous) in partial

fulfilment of the requirement for the award of M.Sc. Degree

programme in Statistics

by

PRANAV A P

Register No.CCAWMST008

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

CERTIFICATE

This is to certify that the project entitled 'GOLD PRICE PREDIC-TION USING MACHINE LEARNING ALGORITHMS', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by PRANAV A P (CCAWMST008) during the period of his study in the Department of Statistics. Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2024.

Ms. Linett Georg

Assistant Professor

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

Dr.Davis Antony M

Head, Department of Statistics

(Self Financing)

Christ College(Autonomous)

Irinjalakuda

External Examiner: John Ban bern & K.J Place: Isinjalakuda

29-06-24 Date:

DECLARATION

I hereby declare that the matter embodied in the project entitled 'GOLD PRICE PREDICTION USING MACHINE LEARNING ALGORITHMS '. submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidance and Supervision of Linett George, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2024.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associate ship, fellowship etc. of any other university or institution.

Irinjalakuda

Promer PRANAV A P

Date: 29-06-24

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Linett George . Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:

PRANAV A P

Contents

1	Int	troduct	tion	8
2	Me	thodol	ogy	12
	2.1	Rando	om Forest Regression	12
		2.1.1	Data Preparation	13
		2.1.2	Bootstrap Sampling	. 14
		2.1.3	Tree Construction	. 15
		2.1.4	Aggregating Predictions	. 16
		2.1.5	Evaluation Metrics	. 17
	2.2	Gradie	ent Boosted Regression Trees (GBRT)	19
		2.2.1	Data Preparation	19
		2.2.2	Model Training	20

		2.2.3	Boosting Process and Mathematical Foundations 22	
		2.2.4	Evaluation Metrics	
		2.2.5	Feature Importance	5
	2.3	K-Nea	arest Neighbors (KNN)	6
		2.3.1	Data Preparation	26
		2.3.2	Algorithm Mechanics	28
		2.3.3	Prediction Making	29
		2.3.4	Hyperparameter Tuning	30
		2.3.5	Evaluation Metrics	31
3	Dat	a Ana	lysis	32
	3.1	Datase	et	32
	3.2	Correl	ation Heatmap	34
	3.3	Perform	mance Matrices	. 36
	3.4	Plot of	f Actual values vs Predicted Values	. 37
	3.5	Plot of	f Residuals vs Predicted Values	. 39

4	Concl	usi	on
---	-------	-----	----

References

List of Figures

3.1	Correlation Heatmap of the dataset	34
3.2	Plot of Actual values vs Predicted values	37
33	Plot of Actual values vs Predicted values	39

A STUDY ON NIFTY50 INDEX OF NATIONAL STOCK EXCHANGE

Project report submitted to Christ College (Autonomous) in partial

fulfilment of the requirement for the award of M.Sc. Degree

programme in Statistics

by

RIYAN MOHAMMAD

Register No.CCAWMST009

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

 $\mathbf{2024}$

A STUDY ON NIFTY50 INDEX OF NATIONAL STOCK EXCHANGE

Project report submitted to Christ College (Autonomous) in partial

fulfilment of the requirement for the award of M.Sc. Degree

programme in Statistics

by

RIYAN MOHAMMAD

Register No.CCAWMST009

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

CERTIFICATE

This is to certify that the project entitled 'A STUDY ON NIFTY50 INDEX OF NATIONAL STOCK EXCHANGE', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by RIYAN MOHAMMAD(CCAWMST009) during the period of his study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2024.

Geethu Gopinath

Assistant Professor Department of Statistics Christ College (Autonomous) Irinjalakuda

Sonlegrm. K. K.

Place: IRINJALAKUDA

Date: 29-06-2024

External Examiner:

Dr.Davis Antony M Head , Department of Statistics (Self Financing) Christ College (Autonomous) Irinjalakuda

DECLARATION

I hereby declare that the matter embodied in the project entitled 'A STUDY ON NIFTY50 INDEX OF NATIONAL STOCK EXCHANGE', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidance and Supervision of Geethu Gopinath, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2024.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associate ship, fellowship etc. of any other university or institution.

Irinjalakuda

Date: 29-06-2024

Marnet RIYAN MOHAMMAD

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Geethu Gopinath , Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date: 29-06-2004

RIYAN MOHAMMAD

Contents

1	I	TRODUCTION	8	
2	METHODOLOGY			
	2.1	Time Series Analysis	10	
	2.2	Stationary Process	11	
	2.3	Autoregressive Process	12	
	2.4	Moving Average Process	12	
	2.5	Auto Regressive Integrated Moving Average (ARIMA) Model	13	
	2.6	Autocorrelation Function (ACF)	15	
	2.7	Partial Autocorrelation Function (PACF)	16	
	2.8	Augmented Dickey-Fuller Test	17	
	2.9	Akaike Information Criterion (AIC)	17	

		2.9.1 Interpretation	18
	2.10	Bayesian Information Criterion (BIC)	18
	2.11	ARIMA Model Fitting	20
	2.12	Forecasting	22
	2.13	Correlation Analysis	22
	2.14	Linear Regression Analysis	23
3	DAT	TA ANALYSIS	24
	3.1	Time series plot	24
	3.2	Decomposition of Time Series	25
	3.3	ACF and PACF plots	26
	3.4	Test for stationarity	28
	3.5	Model building	31
	3.6	Residual Analysis	32
	3.7	Forecasting	34
		3.7.1 Forecasting table	34
	3.8	Correlation analysis	36

	3.9 Linear regression analysis	37
4	CONCLUSION	39
RI	EFERENCE	41

41

List of Figures

3.1	Time Series Plot of Nifty50	25
3.2	Decomposition of Nifty50	26
3.3	ACF plot	27
3.4	PACF plot	27
3.5	Differencing plot	29
3.6	Differenced PACF plot	30
3.7	Residual analysis plot	32
3.8	Forecast	34
3.9	Scatter plot	37

THYROID DISORDER CLASSIFICATION IN WOMEN WITH ABNORMAL UTERINE BLEEDING

Project report submitted to Christ College (Autonomous) in partial

fulfilment of the requirement for the award of M.Sc. Degree

programme in Statistics

by

SAMIA A.A

Register No.CCAWMST010

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

CERTIFICATE

This is to certify that the project entitled 'THYROID DISORDER CLASSIFICATION IN WOMEN WITH ABNORMAL UTERINE BLEEDING', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by SAMIA A.A(CCAWMST010) during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2024.

Jiji M.E

Assistant Professor Department of Statistics Christ College (Autonomous) Irinjalakuda

Dr. Davis Mundassery

Head,Department of statistics (Self Financing) Christ College (Autonomous)

Irinjalakuda

External Examiner: John Place: Ivinjalakuda Date: 29-06-2024

NT OF STATIS IRINJALAKUDA CHRIST G

DECLARATION

I hereby declare that the matter embodied in the project entitled. 'THYROID DISORDER CLASSIFICATION IN WOMEN WITH ABNOR-MAL UTERINE BLEEDING', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidance and Supervision of Jiji M.B, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2021-2023.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associate ship, fellowship etc. of any other university or institution.

Irinjalakuda

Date: 29-06-2024

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Jiji M.B , Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda Date: 29-06-2024

SAMIA A.A

Contents

1 INTRODUCTION											
	1.1 Introduction	8									
	1.2 Problem Statement	11									
	1.3 Objectives	11									
	1.4 Statistical tool used	12									
	1.4.1 Machine learning	12									
	1.5 Software used	13									
	1.5.1 Python	. 13									
	2 METHODOLOGY	14									
	2.1 Data Collection and Understanding	. 14									
	2.2 Exploratory Data Analysis	. 15									

2.3	Classification
2.4	Data preprocessing for classification
	2.4.1 Train-test splitting:
2.5	Model building for classification
	2.5.1 Decision Tree classifier
	2.5.2 Random Forest classifier
	2.5.3 Naive Bayes Classifier
	2.5.4 XGBoost(eXtreme Gradient Boosting) classifier 24
2.6	Comparison of the accuracy of the models for classification 26
	2.6.1 Confusion matrix
	2.6.2 Accuracy
	2.6.3 Precision
	2.6.4 Recall
	2.6.5 F1-Score
2.7	Prediction using test data 29

3 DATA ANALYSIS

3.1 Dataset	
3.2 Data cleaning	2
3.3 Exploratory Data Analysis	1
3.3.1 Visualization of distribution	4
3.4 Decision Tree Classifier	8
3.5 Random Forest Classifier	38
3.6 Naive Bayes Classifier	39
3.7 XG Boost Classifier	39
3.8 Comparison of various performance metrics	40
4 CONCLUSION	44
5 REFERENCES	46
6 APPENDICES	48

List of Figures

3.1	Dataset	• •		•			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	30	
3.2	Null values	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•					•	•	32	
3.3	duplicates	•		•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•			•	•	33	
3.4	Description of data	a	•	•		•	•		•	•	•	•	•	•			•	•	•	•	•				•		•	33	
3.5	Pie chart	·		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•						•		•	34	
3.6	Stacked barchart	•	•		•	•	•	•		•			•	•	•										•	•	•	35	
3.7	Stacked barchart	•	•		•	•	•	•		•												•	•					35	
3.8	Stacked barchart	•	•		•	•	•	•	•		•	•						•		•		•			•			36	
3.9	Stacked barchart	•		•	•	•	•		•	•							•	•		•	•	•	•	•	•			36	1000
3.10	Correlation Heatn	naj	р	•	•	•		•	•			•			•	•	•	•	•		•	•						. 37	No. of Lot of Lo
3.11	User interface						•				•		•	•		•							•				•	. 43	

A STUDY ON KUMARASWAMY DISTRIBUTION

Dissertation report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Statistics

by

SELIN STELVIA RODRIGUES

Register No.CCAWMST011

Department of Statistics Christ College (Autonomous) Irinjalakuda

CERTIFICATE

This is to certify that the project entitled "A STUDY ON KUMARASWAMY **DISTRIBUTION**" submitted to the Department of Statistics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Statistics, is a bonafide record of project work done by Ms. SELIN STELVIA RODRIGUES (CCAWMST011) during the period of her study in the Postgraduate and Research Department of Statistics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2024. Dr.Deris Antony M MM.B Mrs Head, Department of Statistics Assistant Professor Self Financing Department of Statistics Christ College(Autonomous) Christ College (Autonomous) Irinjalakuda Irinjalakuda

External Examiner :

Place : Irinjalakuda Date : June 2024 – 29

SPOP A CI
DECLARATION

I hereby declare that the project work entitled "A study on Kumaraswamy Distribution" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Statistics is a record of research work done by me during the period of my study in the Postgraduate and Research Department of Statistics, Christ College(Autonomous), Irinjalakuda.

Selin Stelvia Rodrigues

Place : Irinjalakuda Date : June 2024 – 29

ACKNOWLEDGEMENT

Firstly, words cannot express the immense grace bestowed upon me by my Redeemer. This dissertation has been made possible by the collaboration of numerous people. My sincere gratitude goes out to everyone who has contributed to the success of this project by providing inspiration, support, and guidance.

My sincere gratitude goes out to Ms.Jiji, Assistant Professor in the Postgraduate and Research Department of Mathematics, Christ College (Autonomous), Irinjalakuda, who diligently mentored me throughout this endeavor.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non-teaching staff of the Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

Selin Stelvia Rodrigues

Contents

Li	List of Figures i						
In	trodu	iction		1			
1	Kur	narasv	vamy Distribution	2			
	1.1	Definit	ton	2			
		1.1.1	Probability Density Function	. 2			
		1.1.2	Cumulative Distribution Function	. 4			
	12	Need	for Kumaraswamy distibution	. 5			
	1.2	1.2.1	Flexibiltiy	. 5			
		1.2.2	Bounded Data	. 5			
		123	Simple formulation	. 5			
		1.2.0	Ceneralisation	. 5			
		1.2.4	tion	. 6			
	1.3	Appli	cations	. 6			
		1.3.1	Hydrology	. 6			
		1.3.2	Finance	6			
		1.3.3	Engineering and Reliability	. 7			
	1.4	Centr	al Tendency	7			
		1.4.1	Mean				

Contents

		1.4.2 Median	8
		1.4.3 Mode	9
2	Cha	aracteristics	10
	2.1	Moment Generating Function	10
	2.2	Maximum Likelihood Estimation	14
	2.3	Moments	16
		2.3.1 Raw Moments	16
		2.3.2 Central Moments	19
		2.3.3 Variance	. 22
		2.3.4 Skewness	. 24
		2.3.5 Kurtosis	. 26
3	Sta	atistical Measures	29
	3.1	Survival Function	32
	3.2	Hazard Function	34
	3.3	Quantile Function	36
	3.4	Quartile Deviation	37
		the Laturoon Beta Distribution	39
4	Re	lationship between Deta 2120	39
	4.1	Introduction	40
	4.2	Relation using PDF	41
	43	Relation using CDF	
	4.4	Relation using Logistic Map	42
		Management And	46
5	Ge	eneralization of Kumaraswamy	46
	5.1	Conversion of distribution into Kw-G distribution	

	5.2	A few	generalized distributions of Special Kw.	48
	• • •	5.9.1	Kill Need 1	48
		5.2.1	Kw-Normal	50
		5.2.2	Kw-Weibull	51
		5.2.3	KW- Exponential	52
		5.2.4	KW-Pareto	
6	Fit	ting of	f Kumaraswamy Distribution	54
7	Co	nclusio	on	55
				56
8	Ар	pendi	X	56
	8.1	Pyth	on code for fitting of kumaraswamy distribution	
				59

 \mathbf{v}

4

References

List of Figures

1.1	PDF of Kumaraswamy Distribution	3
1.2	CDF of Kumaraswamy Distribution	4
2.1	MGF of Kumaraswamy Distribution	13
2.2	Skewness of Kumaraswamy Distribution	25
2.3	Kurtosis of Kumaraswamy Distribution	28
3.1	Survival function of Kumaraswamy Distribution	33
3.2	Hazard function of Kumaraswamy Distribution	35

A STATISTICAL STUDY ON WHEAT PRODUCTION IN INDIA

Project report submitted to Christ College (Autonomous) in partial fulfilment for the award of the M.Sc. Degree programme in Statistics

by

VISHNUPRIYA V Register No. CCAWMST012

Department of Statistics Christ College (Autonomous) Irinjalakuda 2024

CERTIFICATE

This is to certify that the project entitled "A STATISTICAL STUDY ON WHEAT PRODUCTION IN INDIA", submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by VISHNUPRIYA V (CCAWMST012) during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2023-2024

Dr.Davis Antony Mundassery Head of Department (Self Financing) Department of Statistics Christ College (Autonomous) Irinjalakuda

Dr. Davis Antony Mundassery Head of Department (Self Financing) Department of Statistics Christ College (Autonomous) Irinjalakuda

External Examiner:

Place : Irinjalakuda Date : 24/06/2024

Sankeron. K. K. b

DECLARATION

I hereby declare that the matter itembodied in the project entitled 'A STATIS-TICAL STUDY ON WHEAT PRODUCTION IN INDIA ', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidence and Supervision of Dr.Davis Antony Mundassery,Head of Department, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2023-2024.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associateship, fellowship etc. of any other university or institution.

Irinjalakuda Date:

Vishnuprya

VISHNUPRIYA V

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Dr.Davis Antony Mundassery, Head of Department, Department of Statistics, for his generous help, constructive criticism, scholorly guidence, valuable supervision and encouragement throughout the preparation of the project would not have been materialized.

I would like to give my sincere thanks to my teachers for the inspiration, encouragement and technical help they bestowed upon me.I am indebted to the faculty of the Department for sharing with me their knowledge base and for giving me a better perspective of the subject and for providing the necessary facilities during the span of my study

My sincere thanks are also due to Librarian and non-teaching staff of the Christ College(Autonomous) Irinjalakuda for their help and co-operations.Also,I register my heartfull thanks to my classmates for the co-operation and warmth I could enjoy from them.Last but not least,I am indebted to my parents for their unconditional love and support.

Irinjalakuda Date:

VISHNUPRIYA V

CONTENTS

CHAPTER 1

1.1 INTRODUCTION	1
1.2 OBJECTIVE OF THE STUDY	3
1.3 DATA DESCRIPTION	3

CHAPTER 2

2.1 REGRESSION ANALYSIS	4
2.2 TIME SERIES ANALYSIS	6
2.3 TIME SERIES MODELS	12
2.4 DIAGNOSTIC CHECKING	16
2.5 MODEL IDENTIFICATION	
2.6 FORECASTING	19

CHAPTER 3

3.1 DATA ANALYSIS	20
3.2 BEST MODEL SELECTION	30
3.3 CORRELATION	
3.4 REGRESSION ANALYSIS	

REFERENCES

Forecasting of Coffee Production in India

Project report submitted to Christ College (Autonomous) in partial

fulfilment of the requirement for the award of M.Sc. Degree

programme in Statistics

by

ROSMIYA JOSEPH

Register No.CCAWMST013

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

2024

CERTIFICATE

This is to certify that the project entitled 'Forecasting of Coffee Production in India', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by ROSMIYA JOSEPH(CCAWMST013) during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2024.

Dr.Davis Antony M

Assistant Professor Head,Department of Statistics (self financing) Christ College (Autonomous) Irinjalakuda

TP. Spitm 10

Place: Ininjalanuda Date: 29/06/24

External Examiner:

Course Coordinator Department of Statistics Christ College (Autonomous) Irinjalakuda

DEDavis Antony M

DECLARATION

I hereby declare that the matter embodied in the project entitled ' Forecasting of Coffee Production in India', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidance and Supervision of Dr.Davis Mundassery, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2024.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associate ship, fellowship etc. of any other university or institution.

Irinjalakuda

Date: 29/06/24

ROSMIYA JOSEPH

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Dr.Davis Antony M, Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date: 29/06/24

ROSMIYA JOSEPH

Contents

1	Ir	ntroduction	9
2	M	ethodology	19
	2.1	Time Series	19
	2.2	Stationary Process	20
		2.2.1 Weakly stationary	20
		2.2.2 Strictly stationary	21
	2.3	Auto Regressive processes (AR)	21
	2.4	Moving Average (MA) process	22
	2.5	Mixed auto regressive-moving average processes(ARMA)	23
	2.6	Auto Regressive Integrated Moving Average (ARIMA) model .	24
	2.7	Auto Correlation Function(ACF)	25

	2.8	Partial Auto Correlation Function (PACF)	25
	2.9	Augmented Dickey-Fuller test	26
	2.10	Akaike Information Criterion (AIC)	27
	2.11	Normalised Bayesian Information Criterion(BIC)	28
	2.12	Residual Analysis	29
	2.13	Ljung-Box Test	30
	2.14	Forecasting	31
}	Tim	e Series Analysis	32
	3.1	Time series plot	33
	3.2	Decomposition of the Time Series	34
	3.3	ACF and PACF plots	36
	3.4	Augmented Dickey Fuller Test	37
	3.5	Differencing plot	39
	3.6	ARIMA Modelling using python	41
	3.7	Residual Analysis	42
	3.8	Forecasting	. 46

3.8.1	Forecasting table	 	 	 47
Conclusio	m			48

References

List of Figures

3.1	Time Series Plot of Arabica and Robusta							-		•	33
3.2	Decomposition of Arabica coffee production	•				•		•		•	34
3.3	Decomposition of Robusta coffee production									•	35
3.4	ACF and PACF plot off Arabica production					•	•			•	36
3.5	ACF and PACF plot of Robusta production							•		•	37
3.6	Differencing plot of Arabica Production		•	•			•				39
3.7	Differencing plot of Robusta Production									•	39
3.8	ACF plot		•							•	40
3.9	PACF plot	•			•			•			40
3.10	Time series plot of residuals	•		100 · 100	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				and a second	•	42
3.11	ACF and PACF Plots of Residuals for Arabic	ca									43

3.12	ACF and	PACF	Plots of	of Rea	siduals :	for Ro	busta	L	• •	 • • •	43
3.13	Forecast									 	. 46