Reg.No:

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2024

(CBCSS - UG)

CC19U BCA1 C01 - MATHEMATICAL FOUNDATION OF COMPUTER APPLICATION

(Mathematics - Complementary Course)

(2019 to 2023 Admissions - Supplementary/Improvement)

Time: 2.00 Hours Maximum: 60 Marks

Credit: 3

Part A (Short answer questions)

Answer *all* questions. Each question carries 2 marks.

1. Find
$$5A$$
, if $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$

- 2. Define Diagonal Matrix
- 3. Prove that $A A^T$ is Skew Symmetric
- 4. Write -5x + 7y = 2; 2x 3y = -1 in matrix form
- 5. Using Cramer's Rule, solve:

$$2x - y = 3$$
$$x + 3y = -2$$

6. Find the value of
$$\begin{vmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 1 & 2 & 3 \end{vmatrix}$$

- 7. Give the expression for A^{-1}
- 8. Find $|\bar{a}|$, if $\bar{a}=-5\bar{i}-4\bar{j}+\bar{k}$
- 9. Evaluate $\lim_{t\to 6} 8(t-5)(t-7)$
- 10. Find $\frac{dy}{dx}$, if $y = x + \frac{1}{x}$
- 11. Evaluate $\int_a^b x^3 dx$
- 12. Evaluate $\int_0^1 x dx$

(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph)

Answer *all* questions. Each question carries 5 marks.

13. Using Gauss-Jordan Elimination method, solve

$$x + y + z = 4$$

$$2x + 5y - 2z = 3$$

- 14. Check the dependency of $v_1=[\,1\quad 9\quad 9\quad 8\,],\,v_2=[\,2\quad 0\quad 0\quad 3\,]$ and $[\,2\quad 0\quad 0\quad 8\,]$
- 15. Find the eigen values of the matrix

$$\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

- 16. Find $\frac{dy}{dx}$ by using first principle, if $y = x^3 x$
- 17. Find $\frac{dy}{dx}$, if $y = \frac{x^2 1}{x^2 + x 2}$
- 18. Evaluate $\int (x^{3/2} + 2e^x \frac{1}{x})dx$
- 19. Evaluate $\int \frac{dx}{(x-1)(x-3)}$

(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any *one* question. The question carries 10 marks.

- 20. (a) Find the rank of the matrix $A = \begin{pmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{pmatrix}$
 - (b) Find the rank of the matrix $A=\begin{pmatrix}1&2&-3\\2&5&-4\end{pmatrix}$
- 21. (a) Find $\frac{dy}{dx}$, if y = cos(sinx)
 - (b) Find $\frac{dy}{dx}$, if $y = sec(tan(\sqrt{x}))$

 $(1 \times 10 = 10 \text{ Marks})$
