BOT2MN100:Microbial Diversity & PhytoPathology Section-A-Mark-3

- ^{1.} Illustrate the unique features of the Monera kingdom
- Summarize the criteria used by Whittaker to classify organisms into five kingdoms
- ^{3.} Explain the major characteristics of Plantae and Animalia kingdoms.
- ^{4.} Explain the key characteristics of Protista and Monera in Whittaker's system
- ^{5.} Explain any three evolutionary significance of Whittaker's classification
- ^{6.} Explain any three types of microorganisms you have studied
- 7. Explain the basic characters of virus
- ^{8.} Describe the general structure of a typical virus
- ^{9.} Illustrate the occurrence of viruses in different habitat
- ^{10.} Explain the structure of TMV
- ^{11.} Explain capsomeres
- ^{12.} Describe the structure of a T4 bacteriophage
- ^{13.} Describe the structure of virons
- ^{14.} Explain the difference between virus and virions
- ^{15.} Describe the structure of prions
- ^{16.} Describe the structure of mycoplasma
- ^{17.} Describe the key features of the COVID-19 pathogen
- ^{18.} Describe the key features of H1N1 pathogen
- ^{19.} Explain the causitive organism, structure and mode of transmission of COVID -19 virus
- 20. Explain the causitive organism, structure and mode of transmission of H1N1 virus
- ^{21.} Explain the causitive organism and structure of H1N1 and COVID 19 virus

- ^{22.} Explain the difference between Eubacteria and Archaebacteria based on their cell wall structure
- ^{23.} Explain thermophiles
- ^{24.} Describe psychrophiles
- ^{25.} Describe halophiles
- ^{26.} Explain any six characters of Eubacteria
- ^{27.} Explain why psychrophiles are found in polar regions and deep oceans
- ^{28.} Describe the major shapes of bacteria and provide examples
- ^{29.} Explain the role of the bacterial cell wall
- ^{30.} Summarize the function of flagella
- ^{31.} Explain the difference between plasmid and episome
- ^{32.} Explain the difference between coccus and bacillus bacteria
- ^{33.} Summarize the function of pilli
- ^{34.} Describe the basic composition of the Gram-positive bacterial cell wall.
- ^{35.} Summarize the role of teichoic acids in Gram-positive bacterial cell walls.
- ^{36.} Describe the basic composition of the Gram-negative bacterial cell wall.
- ^{37.} Illustrate the differences in staining results between Gram-positive and Gramnegative bacteria.
- ^{38.} Explain the difference between gram positive and gram negative bacteria
- ^{39.} Explain the procedure of Acid fast staining
- ^{40.} Describe the procedure of Gram staining
- ^{41.} Explain the importance of the thick peptidoglycan layer in Gram-positive bacteria
- ^{42.} Summarize the role of mycolic acids in acid-fast bacteria
- ^{43.} Explain how penicillin affects the bacterial cell wall
- ^{44.} Describe the role of lysozyme in degrading the bacterial cell wall

- ^{4.3.} Explain the mechanism of action of vancomycin on the bacterial cell wall
- ^{46.} Summarise the effect of any three types antibiotics
- ^{47.} Summarise the effect of any three types enzymes
- ^{48.} Describe the basic structure of the bacterial cell membrane
- ^{49.} Explain the function of phospholipids in the bacterial cell membrane.
- ^{50.} Explain the role of mesosomes in bacterial cells
- ^{51.} Summarize how proteins are embedded in the bacterial cell membrane to support transport
- ^{52.} Explain any two chemical composition of the bacterial cell membrane
- ^{53.} Describe the structure of mesosomes in bacterial cells
- ^{54.} Explain the difference between lag phase and log phase of bacterial growth
- ^{55.} Illustrate the stationary phase in the bacterial growth curve
- ^{56.} Summarise the difference between binary fission and endospore in bacteria
- ^{57.} Explain the characteristics of the death phase in bacterial growth
- ^{58.} Explain binary fission in bacteria
- ^{59.} Summarise the difference between transformation and transduction
- ^{60.} Summarise the key steps involved in transformation in bacteria
- ^{61.} Describe the role of a bacteriophage in the transduction process
- ^{62.} Explain the significance of pili in bacterial conjugation
- ^{63.} Summarise the differences between the donor and recipient cells in bacterial conjugation
- ^{64.} Describe the objective of streaking method for pure culture isolation.
- ^{65.} Explain any two types of streaking techniques for pure culture isolation
- ^{66.} Explain the difference between quadrat streaking and continous streaking method
- ^{67.} Describe the limitations of serial dilutions

- vo. Describe any three advantages and disadvantages of streaking method
- ^{69.} Explain lyophilization
- ^{70.} Summarise the various environmental factors essential for preserving pure culture
- ^{71.} Describe any three types of biopesticides
- ^{72.} Summarize any three advantages and disadvantages of biopesticides
- ^{73.} Explain any three mechanism of plant growth promoting bacteria
- ^{74.} Summarise the challenges in microbial biofuel production
- ^{75.} Explain the benefits of biofertilizers
- ^{76.} Explain antibiotics and spectrum of antibiotic activity
- 77. Explain probiotics and its types
- ^{78.} Describe bacteriphage therapy
- ^{79.} Summarise any three mechanism of antimicrobial resistance
- ^{80.} Explain any three mechanism of probiotics
- ^{81.} Summarise the application of viral vectors in gene therapy
- ^{82.} Describe viral vectors in genetic engineering
- ^{83.} Explain any three types of viral vectors
- ^{84.} Describe gene therapy
- ^{85.} Summarise the role of retro virus and adeno-associated virus in genetic engineering
- ^{86.} Describe the different types of bacteria used in industrial fermentation
- 87. Explain bioaugumnetation
- 88. Explain biostimulation
- ^{89.} Summarise the difference between bioaugumentation and biostimulation
- ^{90.} Explain the key aspects of bioaugumentation
- ^{91.} Explain the key aspects of biostimulation

- ^{72.} Explain plant disease and its importance in agriculture
- ^{93.} Describe the role of fungi as plant pathogens
- ^{94.} Explain the common symptoms of bacterial plant diseases
- ^{95.} Explain chlorosis
- ^{96.} Describe the role of virus as plant pathogens
- ^{97.} Summarize the key differences between bacterial and fungal plant pathogens.
- ^{98.} Describe Koch's postulates
- 99. Explain penetration in host-parasite interactions
- ^{100.} Describe the role of phytoalexins in plant immunity.
- ^{101.} Describe the function of elicitors in plant-pathogen interactions.
- ^{102.} Describe how phenolic compounds act as a defense strategy in plants.
- ^{103.} Describe any three cultural practices used in disease management
- ^{104.} Explain how botanical methods are applied in plant disease management.
- ^{105.} Describe any three environmental concerns associated with chemical disease management
- ^{106.} Summarize the concept of Integrated Disease Management (IDM)
- ^{107.} Describe management stratagies for fungicide resistance
- ^{108.} Explain the role of biological control agents in disease management
- ^{109.} Describe the symptoms of Grey Leaf Spot disease in coconut.
- ^{110.} Summarize the epidemiology of Quick Wilt of pepper caused by fungal pathogens.
- ^{111.} Describe the management strategies for Citrus Canker
- ^{112.} Explain the symptoms of Tapioca Mosaic disease
- ^{113.} Explain the symptoms of Bunchy Top disease in banana.
- ^{114.} Summarize the management practices for Blast of Paddy Section-B-Mark-6

- Explain the key differences between the Protista and Fungi kingdoms in Whittaker's system
- ^{2.} Explain the evolutionary significance of Whittaker's classification
- ^{3.} Explain the different types of microorganisms
- ^{4.} Explain the golden era of microbiology
- ^{5.} Explain lytic cycle of virus
- ^{6.} Explain the different types of architecture in virus
- ^{7.} Explain the difference between lytic and lysogenic cycle of virus
- ^{8.} Explain the characters and occurance of virus
- 9. Explain the structural differences between bacteriophages and Mycoplasma
- ^{10.} Discuss the structural organization of prions and compare them with virions
- Discuss the key structural differences between T4 bacteriophages, prions, and Mycoplasma
- ^{12.} Explain the structural differences between prions and Mycoplasma
- ^{13.} Explain the general account of COVID 19 virus
- ^{14.} Explain the general account of H1N1 virus
- ^{15.} Explain the strategies used to mitigate the impact of COVID-19 and H1N1
- Explain the structure, symptoms, pathogenesis and mode of transmission of COVID - 19 and H1N1 virus
- ^{17.} Explain the characters of Eubacteria
- ^{18.} Summarize the characters of thermophiles and psychrophiles in extreme temperature conditions
- ^{19.} Summarize the characters of halophiles and psychrophiles in extreme temperature conditions
- ^{20.} Summarize the characters of halophiles and thermophiles in extreme temperature conditions
- ²¹. Discuss the morphological diversity of bacteria with the help of diagrams and examples

- ^{22.} Explain the ultrastructure of bacteria
- ^{23.} Explain the different organelles present in bacterial cytoplasm
- ^{24.} Explain the different organelles present outer to bacterial cytoplasm
- ^{25.} Discuss the structural features of Gram-negative bacterial cell walls that make them more resistant to certain antibiotics.
- ^{26.} Explain the procedure and mechanism of gram staining
- ^{27.} Explain the structure of gram positive bacteria
- ^{28.} Explain the structure of gram negative bacteria
- 29. Explain the mechanisms by which penicillin and lysozyme disrupt the bacterial cell wall
- ^{30.} Explain the types of antibiotics and their effect on bacterial cell wall
- ^{31.} Explain the types of enzyme and their effect on bacterial cell wall
- ^{32.} Explain the mechanisms of antibiotics and enzymes on the bacterial cell wall
- ^{33.} Explain the structure of bacterial cell membrane
- ^{34.} Explain the chemical composition of the bacterial cell membrane
- ^{35.} Explain the functions of bacterial cell membrane
- ^{36.} Discuss the structure and functions of Mesosomes
- ^{37.} Explain the phases of the bacterial growth curve
- ^{38.} Discuss the different methods of asexual reproduction in bacteria
- ^{39.} Discuss the steps involved in binary fission and their importance in microbial reproduction
- ^{40.} Discuss the difference between log phase and stationary phase of bacterial growth curve
- ^{41.} Explain the conjugation between F+ and F- strains of Bacteria
- ^{42.} Explain transformation in Bacteria
- ^{43.} Explain any two methods of reproduction in Bacteria
- 44. Describe transformation and transduction in Racteria

- +J. Explain the different types of streakig techniques for pure culture isolation
- ^{46.} Explain serial dilution and the process of serial dilution
- ^{47.} Explain plating method and the process of plating
- ^{48.} Explain different types of storage technique for preserving pure culture
- ⁴⁹. Explain the importance of micro organisms in agriculture
- ^{50.} Explain the different types of biofertilizers
- ^{51.} Explain biofuels and different types of biofuel
- ^{52.} Summarize the contribution of soil microbes to plant health.
- ^{53.} Explain antibiotics and its different types
- ^{54.} Explain different mechanism of antibiotic resistance
- ^{55.} Describe antimicrobial resistance and its mechanism
- ^{56.} Summarise the different categories of microbial therapeutics
- ^{57.} Explain different types of viral vectors
- ^{58.} Explain gene therapy and application of viral vectors in gene therapy
- ^{59.} Describe virus and role of viral vectors in genetic engineering
- ^{60.} Explain virus and its different types
- ^{61.} Explain any three application of extremophiles in biotechnology
- ^{62.} Describe bioaugumentation and its key aspect in environmental remediation
- ^{63.} Describe biostimulation and its key aspect in enivironmental remediation
- ^{64.} Explain the role of bacteria in industrial fermentation
- ^{65.} Explain the symptoms of viral plant diseases and their effects on plant health
- ^{66.} Explain the symptoms of fungal plant diseases and their effects on plant health
- ^{67.} Describe the different types of plant pathogen
- ^{68.} Explain the symptoms of mycoplasma and nematode plant diseases and their effects on plant health
- 69. Evolain the stans involved in Kach's nostulates and its challenges

- ^{10.} Discuss the enzymatic and phenolic detense mechanisms of plants against pathogens.
- ^{71.} Explain any three defence strategies of plants against pathogens
- ^{72.} Explain the prepenetration of host parasite interaction
- ^{73.} Explain cultural and botanical methods of disease management in terms of environmental sustainability.
- ^{74.} Discuss the impact of chemical residues on environment
- ^{75.} Illustrate how Integrated Disease Management combines multiple approaches for effective control.
- ^{76.} Explain the effectiveness of biological and chemical methods in plant disease management.
- 77. Describe the causitive organism, symptoms and management of Grey Leaf Spot disease in coconut.
- 78. Describe the causitive organism, symptoms and management of Quick wilt of pepper.
- ^{79.} Describe the causitive organism, symptoms and management of Citrus canker
- ^{80.} Describe the causitive organism, symptoms and management of Blast of paddy
- 81. Describe the causitive organism, symptoms and management of Tapioca mosaic disease
- ^{82.} Describe the causitive organism, symptoms and management of Bunchy top of banana

Section-C-Mark-10

- ^{1.} Explain Whittaker's classification and its evolutionary significance
- ^{2.} Explain the different types of multiplcation in virus
- ^{3.} Explain the structure of bacteriophages, virions, prions, and Mycoplasma
- Explain the structure, symptoms, pathogenesis, mode of transmission and preventive measures of COVID - 19 and H1N1 virus
- Explain the characters of Eubacteria and Archebacteria in understanding bacteriology

- ^{o.} Explain the morphology and ultrastructure of bacterial cell
- Explain the structure of gram positive and gram negative bacteria. Give the difference in their cell wall
- Explain the types and mechanisms of action of antibiotics and enzymes on the bacterial cell wall
- ^{9.} Explain the structure and functions of bacterial cell membrane
- ^{10.} Explain the phases of the S-curve in bacterial growth, and explain how different asexual reproduction methods contribute to microbial survival
- ^{11.} Explain the different methods of reproduction in Bacteria
- 12. Explain streaking method with its objectives, process and different types of streaking
- ^{13.} Explain the different types of biofertilizers and its advantages and disadvantages
- ^{14.} Expain antibiotics, its types and mechanism of action
- ^{15.} Explain the role of viruses as tools in genetic engineering
- ^{16.} Explain the role of extremephiles in biotechnological applications
- ^{17.} Explain the symptoms of fungal and viral plant diseases on plant health
- ^{18.} Explain host parasite interaction with the help of different steps involved
- ^{19.} Explain biological management strategies with its advantages and limitations
- 20. Explain the etiology, symptoms, epidemiology, and management of Grey Leaf Spot disease of coconut, Citrus Canker and Tapioca Mosaic virus plant diseases