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Part A
Answer all questions. Each question carries 1 weightage.

1.  Define closure of a subset of a topological space. If  is a closed set prove that .

2.  Let   be a topological space .  Prove that  is the union of all open sets contained in 
.

3.  Define projection functions. Prove that projection functions are not closed.

4.  Define weak topology determined by the family of functions .

5.  Prove that every open surjective map is a quotient map.

6.  Prove that a space  is locally connected at a point  , if and only if for every nieghbourhood  of
 the component of  containing   is a a nieghbourhood of   .

7.  Prove that a compact subset in a Hausdorff space is closed.

8.  State Urysohn's lemma

   (8 × 1 = 8 Weightage)
Part B

Answer any two questions each unit. Each question carries 2 weightage.

UNIT - I

9.  Let  be a function where ,   are metric spaces and let . Then prove that  is
continuous at  iff for every open set  in  containing , there exists an open set  in 

 containing  such that .

10.  Let  be a set and let  consists of all those subsets of  whose complements are countable together
with the empty set. Show that   is a topology.

11.  Define hereditary property. Prove that metrisability is a hereditary property.

UNIT - II

12.  Define second countable space. Is every second countable space first countable? Justify.

13.  Prove that topological product of any finite number of connected spaces is connected.
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14.  Define path connected space. Prove that every path connected space is connected.

UNIT - III

15.  Define Hausdorff space. Prove that in a Hausdroff space, limits of  sequences are  unique.

16.  Define regular space and show that regularity is a hereditary  property.

17.  Prove that every regular Lindeloff space is normal.

(6 × 2 = 12 Weightage)
Part C

Answer any two questions. Each question carries 5 weightage.

18.  Prove that the product topology on   coincides with the usual topology on it.

19.  (a) Prove that  every  continuous  real valued function  on a  compact space  is  bounded  and  attains  its
      extrema.
(a) State and prove Lebesque covering lemma.

20.  (a) Prove that a subset of    is connected iff it is an interval.
(b) Prove that connectedness is preserved under a continuous surjection.       

21.  Let   be a closed subset of a normal space    and suppose    is a continuous function.
Then prove that there exists a continuous function    such that  for all  

 .

(2 × 5 = 10 Weightage)
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