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Part A

Answer all questions. Each question carries 1 weightage.

. Define closure of a subset of a topological space. If A is a closed set prove that A = A.

Let (X,7T) be a topological space A C X. Prove that int(A) is the union of all open sets contained in
A.

. Define projection functions. Prove that projection functions are not closed.

Define weak topology determined by the family of functions {f; : ¢ € I}.
Prove that every open surjective map is a quotient map.

Prove that a space X is locally connected at a point € X, if and only if for every nieghbourhood N of

x the component of N containing z is a a nieghbourhood of z .
Prove that a compact subset in a Hausdorff space is closed.

State Urysohn's lemma
(8 x 1 =8 Weightage)
Part B

Answer any fwo questions each unit. Each question carries 2 weightage.
UNIT -1

Let f: X — Y be a function where X, Y are metric spaces and let zy € X. Then prove that f is
continuous at z iff for every open set V in Y containing f(z(), there exists an open set U in

X containing ¢ such that f(U) C V.

Let X be a set and let T consists of all those subsets of X whose complements are countable together

with the empty set. Show that 7 is a topology.
Define hereditary property. Prove that metrisability is a hereditary property.
UNIT - 11
Define second countable space. Is every second countable space first countable? Justify.

Prove that topological product of any finite number of connected spaces is connected.
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Define path connected space. Prove that every path connected space is connected.

UNIT - III
Define Hausdorff space. Prove that in a Hausdroff space, limits of sequences are unique.
Define regular space and show that regularity is a hereditary property.

Prove that every regular Lindeloff space is normal.

(6 x 2 =12 Weightage)
Part C

Answer any fwo questions. Each question carries 5 weightage.
Prove that the product topology on R™ coincides with the usual topology on it.

(a) Prove that every continuous real valued function on a compact space is bounded and attains its
extrema.

(a) State and prove Lebesque covering lemma.

(a) Prove that a subset of R is connected iff it is an interval.

(b) Prove that connectedness is preserved under a continuous surjection.

Let A be a closed subset of a normal space X and suppose f: A — (—1,1) is a continuous function.
Then prove that there exists a continuous function F : X — (—1,1) such that F(z) = f(x) for all
zeA.

(2 x 5 =10 Weightage)
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