24P203

(Pages: 2)

Name:

Reg.No:

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2025

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH2 C08 - TOPOLOGY

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Define closure of a subset of a topological space. If A is a closed set prove that $\overline{A} = A$.
- 2. Let (X, \mathcal{T}) be a topological space $A \subset X$. Prove that int(A) is the union of all open sets contained in A.
- 3. Define projection functions. Prove that projection functions are not closed.
- 4. Define weak topology determined by the family of functions $\{f_i : i \in I\}$.
- 5. Prove that every open surjective map is a quotient map.
- 6. Prove that a space X is locally connected at a point $x \in X$, if and only if for every nieghbourhood N of x the component of N containing x is a nieghbourhood of x.
- 7. Prove that a compact subset in a Hausdorff space is closed.
- 8. State Urysohn's lemma

$(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any *two* questions each unit. Each question carries 2 weightage.

UNIT - I

- 9. Let $f: X \to Y$ be a function where X, Y are metric spaces and let $x_0 \in X$. Then prove that f is continuous at x_0 iff for every open set V in Y containing $f(x_0)$, there exists an open set U in X containing x_0 such that $f(U) \subset V$.
- 10. Let X be a set and let \mathcal{T} consists of all those subsets of X whose complements are countable together with the empty set. Show that \mathcal{T} is a topology.
- 11. Define hereditary property. Prove that metrisability is a hereditary property.

UNIT - II

- 12. Define second countable space. Is every second countable space first countable? Justify.
- 13. Prove that topological product of any finite number of connected spaces is connected.

14. Define path connected space. Prove that every path connected space is connected.

UNIT - III

- 15. Define Hausdorff space. Prove that in a Hausdroff space, limits of sequences are unique.
- 16. Define regular space and show that regularity is a hereditary property.
- 17. Prove that every regular Lindeloff space is normal.

$(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any *two* questions. Each question carries 5 weightage.

- 18. Prove that the product topology on \mathcal{R}^n coincides with the usual topology on it.
- 19. (a) Prove that every continuous real valued function on a compact space is bounded and attains its extrema.
 - (a) State and prove Lebesque covering lemma.
- 20. (a) Prove that a subset of R is connected iff it is an interval.(b) Prove that connectedness is preserved under a continuous surjection.
- 21. Let A be a closed subset of a normal space X and suppose $f: A \to (-1, 1)$ is a continuous function. Then prove that there exists a continuous function $F: X \to (-1, 1)$ such that F(x) = f(x) for all $x \in A$.

 $(2 \times 5 = 10 \text{ Weightage})$
