83649

(Pages: 3)

Name			,	
	2	I	d	

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE (CUCSS) EXAMINATION JUNE 2015

Statistics

ST 2C 06—ESTIMATION THEORY

(2013 Admissions)

me: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions. Weightage 1 for each question.

- 1. Let $X_1, X_2,, X_n$ be random sample of size n from $B(\alpha, \beta)$, find a sufficient statistic for α when β is known.
- 2. Define complete sufficient statistic.
- 3. State Lehmann-Scheffe theorem.
- 4. Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$ obtain an ancilliary statistic for σ^2 .
- 5. Define exponential family of distributions. Give an example.
- 6. What is meant by a CAN estimator?
- 7. State the application of Fisher Neymann factorization criterion.
- 8. Explain method of percentile estimation.
- 9. Define one parameter Cramer family. Give an example.
- 10. Describe method of moment estimation for finding consistent estimator.
- 11. Define UMA unbiased confindence interval.
- 12. Distinguish between confidence interval and fiducial interval.

 $(12 \times 1 = 12 \text{ weightage})$

Part B

Answer any eight questions. Weightage 2 for each question.

Let X_1 be a Bernonulli random variable with $P[X_1 = 1] = p$ and $P[X_1 = 0] = 1 - p$ and let X_2 be another Bernoulli random variable with $P[X_2 = 1] = 2p$ and $P[X_2 = 0] = 1 - 2p$, $0 and <math>X_1$ and X_2 are independent. Show that $X_1 + X_2$ is not sufficient for p.

Turn over

14. Explain the procedure to obtain the UMVU estimator in the presence of a complete sufficie statistics.

- 15. State and prove Cramer-Rao inequality for the multiparameter case.
- 16. State and prove Basu's theorem.
- 17. Let $X_1, X_2,, X_n$ be a random sample from a Poisson distribution with mean θ find the UMVI of $P(X_1 < 1)$.
- 18. Give an example where the Cramer-Rao lower bound is attained and another where it is attained.
- 19. State the optimum properties of MLE and prove any one of them.
- 20. Let $X_1, X_2,, X_n$ be a random sample from the distribution having p.d.f.

$$f(x,\sigma) = \begin{cases} \frac{1}{\sigma} e^{-\left(\frac{x}{\sigma}\right)}, & \text{for } 0 < x < \infty; 0 < \sigma < \infty \\ 0, & \text{elsewhere.} \end{cases}$$

Find the MLE of σ and show that it is consistent and asymptotically normal.

- 21. Let $X_1, X_2,, X_n$ be a random sample from $B(\alpha, \beta)$. Find the method of moments estimator (α, β) .
- 22. Define shortest length confidence interval and explain the role of sufficient statistic in determ the same.
- 23. Obtain the confidence interval for σ^2 based on a random sample $X_1, X_2,, X_n$ form $N(\mu, \sigma^2)$ when μ is known.
- 24. Let $X_1, X_2,, X_n$ be a random sample from $U(0, \theta)$. Find the unbiased confidence interval θ based on the pivot $\frac{\text{Max } X_i}{\theta}$.

 $(8 \times 2 = 16 \text{ weights})$

Part C

Answer any **two** questions. Weightage 4 for each question.

- 25. (a) Prove or disprove "A complete sufficient statistic is minimal sufficient".
 - (b) State and prove Rao-Blackwell theorem.

26. (a) Find a consistent estimator of the parameter θ of the distribution with p.d.f.

$$f(x,\theta) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}, -\infty < x < \infty, -\infty < \theta < \infty.$$

- (b) Let $X_1, X_2,, X_n$ be i.i.d. observations from $N\left(\mu, \sigma^2\right)$ obtain CAN estimators of $\left(\mu, \sigma\right)$.
- 27. (a) Let $X_1, X_2,, X_n$ be a random sample from $N(\mu, \mu^2)$, find the MLE of μ .
 - (b) Let $X_1, X_2, ..., X_n$ be a random sample from uniform $U(0, \theta)$ distribution. For estimating θ using the squared error loss function, a prior density of θ is given by

$$\pi(\theta) = \frac{\alpha a^{\alpha}}{\theta^{\alpha+1}}, \theta \ge a.$$

Find the Bayes estimator of θ .

- (a) Let $X_1, X_2,, X_n$ be a random sample from $G(1, \theta)$. Find the unbiased confidence interval for θ with confidence level $1-\alpha$ based on the pivot $2\sum_{i=1}^{n} X_i / \theta$.
 - (b) Find a confidence interval with confidence coefficient α for the difference of means of two normal populations with common unknown variances.

 $(2 \times 4 = 8 \text{ weightage})$