SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2015

(CUCSS)

Mathematics

MT 2C 06-ALGEBRA-II

me: Three Hours

Maximum: 36 Weightage

Part A

Short answer questions (1-14).

Answer all questions. Each question has 1 weightage.

- 1. Is $\mathbb{Q}[x]/\langle x^2-2\rangle$ a field? Justify your answer.
- 2. Show that the polynomial $x^2 + 1$ is irreducible in $\mathbb{Z}_3[x]$.
- 3. Is $\mathbb C$ a simple extension over $\mathbb R$? Justify your answer.
- 4. Find $\left[\mathbb{Q}\left(\sqrt[3]{2}\right):\mathbb{Q}\right]$.
- 5. Let E be a finite extension of degree n over a finite field F. If F has q elements, then prove that E has q^n elements.
- 6. Does there exist a field of 4096 elements? Justify your answer.
- 7. Prove that a finite extension E of a finite field F is a simple extension of F.
- 8. Find all conjugates of $3 + \sqrt{2}$ over \mathbb{Q} .
- 9. Find the splitting field of $\{x^2 2, x^3 3\}$ over \mathbb{Q} .
- 10. Show that $\mathbb{Q}(\sqrt[3]{2})$ has only the identify automorphism.
- 11. Define separable extension of a field. Give a separable extension of \mathbb{Q} .
- 12. Let p be a prime, $F = \mathbb{Z}_p$ and let $K = GF(p^{12})$. Find G(K/F).
- 13. Is regular 7-gon constructible? Justify your answer.
- 14. Prove that the polynomial $x^5 1$ is solvable by radicals over \mathbb{Q} .

100 No.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** from the following ten questions (15-24). Each question has weightage 2.

- 15. Let F be a field. Prove that every ideal in F[x] is a principal ideal.
- 16. Prove that a finite extension is an algebraic extension.
- 17. Prove that $\mathbb{Q}\left(\sqrt{3}+\sqrt{7}\right)=\mathbb{Q}\left(\sqrt{3},\sqrt{7}\right)$.
- 18. Show that if E is a finite extension of a field F and [E:F] is a prime number, then E is a sin extension of F and $E=F(\alpha)$ for every $\alpha \in E$ with $\alpha \notin F$.
- 19. Let F be a field and let f(x) be irreducible in F[x]. Prove that all zeros of f(x) in \overline{F} have same multiplicity.
- 20. Let F be a subfield of a field E. Prove that the set all automorphisms of E leaving F fixed for subgroup of the group of all automorphisms of E.
- 21. Show that if [E:F]=2, then E is a splitting field over F.
- 22. Let K be a finite extension of E and E be a finite extension of F. Prove that K is separable of if and only if K separable over E and E is separable over F.
- 23. Describe the group of polynomial $(x^3 1) \in \mathbb{Q}[x]$ over \mathbb{Q} .
- 24. Prove that the Galois group of the pth cyclotonic extension of \mathbb{Q} for a prime p is cyclic of p-1.

 $(7 \times 2 = 14 \text{ weight})$

Part C

Answer any two from the following four questions (25-28). Each question has weightage 4.

- 25. (a) Prove that $x^2 3$ is irreducible over $\mathbb{Q}(\sqrt[3]{2})$.
 - (b) Let E be a finite extension field of a field F and let K be a finite extension field of E. Prov K is a finite extension field of E and

$$[K:F] = [K:E][E:F].$$

- 26. Let F be a field of characteristic p. Prove that the map $\sigma_p: F \to F$ defined by $\sigma_p(a) = a^p$ is an automorphism. Also, prove that $F_{\{\sigma_p\}} = \mathbb{Z}_p$.
- 27. Prove that every finite field is perfect.
- 28. Let F be a field of characteristic zero and let $F \le E \le K \le \overline{F}$, where E is a normal extension of F and K is an extension of F by radicals. Prove that $G\left(E/F\right)$ is a solvable group.

 $(2 \times 4 = 8 \text{ weightage})$