0	0	P	റെ	7
		n	Z	1
	•	~	diam'r.	

(Pages: 3)

Name	
Por No	

20

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2015

(CUCSS)

Mathematics

MT 2C 10-NUMBER THEORY

me: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries a weightage of 1.

- 1. Find all integers x such that $\varphi(n) = \varphi(2n)$.
- 2. Show that $\varphi(mn) = \varphi(m) \varphi(n)$ if (m,n) = 1.
- 3. Define completely multiplicative function.
- 4. Define divisor functions $\sigma_{\alpha}(n)$ for $n \ge 1$ and show that they are multiplicative.
- 5. If f and g are arithmetical functions, then show that (f * g)' = f' * g + f * g'.
- 6. Show that if a > 0 and b > 0, then $\lim_{x \to \infty} \frac{\pi(ax)}{\pi(bx)} = \frac{a}{b}$
- 7. Let (a, m) = 1. Show that the linear congruence $ax = b \pmod{m}$ has exactly one solution.
- 8. Determine the quadratic residues and non-residues modulo 11.
- 9. Determine those odd primes p for which 3 is a quadratic residue.
- 10. Show that if p is an odd positive integer then $(2/p) = (-1)^{\left(\frac{p^2-1}{8}\right)}$.
- 11. Prove that the product of two linear enciphering transformations is also a linear enchiphering transformation.
- 12. Write a short note on enciphering key.
- 13. What is classical cryptosystem?
- 14. State the map coloring problem and translate it to a graph coloring problem.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions.

Each question carries a weightage of 2.

15. Show that for
$$n \ge 1$$
, $\varphi(n) = n \prod_{p/n} \left(1 - \frac{1}{p}\right)$.

- 16. Let f be a multiplicative function. Show that f is completely multiplicative $f^{-1}(n) = \mu(n) f(n)$ for all $n \ge 1$.
- 17. State and prove Euler's summation formula.

18. Show that for
$$x \ge 2$$
;
$$\sum_{p \le x} \left[\frac{x}{p} \right] \log p = x \log x - x + 0 (\log x).$$

19. Show that for any prime
$$p \ge 5$$
; $\sum_{k=1}^{p-1} \frac{(p-1)!}{k} \equiv 0 \pmod{p^2}$.

20. Let
$$p$$
 be an odd prime. Show that for all n ; $(n/p) \equiv n^{\left(\frac{p-1}{2}\right)} \pmod{p}$.

21. Show that given any integer k > 0 there exists a lattice point (a, b) such that none of the la points (a + r, b + s), $0 < r \le k$, $0 < s \le k$ is visible from the origin.

22. Find the inverse of
$$A = \begin{pmatrix} 2 & 3 \\ 7 & 8 \end{pmatrix} \in M_2 \left(\frac{Z}{26 \, Z} \right)$$
.

23. Solve the following system of simultaneous congruences:

$$17x + 11y \equiv 7 \pmod{29}$$

 $13x + 10y \equiv 8 \pmod{29}$.

24. Write a note on the ElGamal cryptosystem.

 $(7 \times 2 = 14 \text{ weigh})$

Part C

Answer any **two** questions.

Each question carries a weightage of 4.

- 25. Show that the set of all arithmetical functions f with $f(1) \neq 0$ forms an abelian group with respect to the Dirichlet product.
- 26. Let p_n deonte the $n^{\rm th}$ prime. Prove that the following are equivalent :

(i)
$$\lim_{x\to\infty}\frac{\pi(x)\log x}{x}=1.$$

(ii)
$$\lim_{x\to\infty}\frac{\pi(x)\log\pi(x)}{x}=1.$$

(iii)
$$\lim_{n\to\infty}\frac{p_n}{n\log n}=1.$$

- 27. State and prove Quadratic reciprocity law.
- 28. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}/N\mathbb{Z})$ and set D = a. Prove that the following are equivalent:

(a)
$$g \subset d = (D, N) = 1$$
.

- (b) A has an inverse.
- (c) If x and y are not both 0 in $\frac{Z}{NZ}$, then $A \begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- (d) A gives a one to one correspondence of $\left(\frac{Z}{NZ}\right)^2$ with itself.

 $(2 \times 4 = 8 \text{ weightage})$