0	0	0	0	A
×	-4	h	%	4
U	u	U	4	T

(Pages: 3)

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2015

(CUCSS)

Mathematics

MT 2C 07-REAL ANALYSIS - II

me: Three Hours

Maximum: 36 Weightage

Part A

Short answer questions.

Answer all questions.

Each question has 1 weightage.

- 1. Let $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $B \in L(\mathbb{R}^m, \mathbb{R}^k)$. Prove that $||BA|| \le ||B|| ||A||$.
- 2. Let X and Y be vector spaces and let $A \in L(X, Y)$ be such that for all $x \in X$ Ax = 0 implies x = 0. Prove that A is one to one.
- 3. Let $f: \mathbb{R}^3 \to \mathbb{R}^1$ be given by $f(x, y, z) = x^3 + y^3 + z^3 + x^2 + y^2 + z^2$. Find the gradient of f at (2, 3, 1).
- 4. State inverse function theorem.
- 5. Let $f = (f_1, f_2)$ be the mapping of \mathbb{R}^2 into \mathbb{R}^2 given by $f_1(x, y) = e^x \cos y$, $f_2(x, y) = e^x \sin y$. Show that the Jacobian of f is not zero at any point of \mathbb{R}^2 .
- 6. Let $\mathcal M$ be a σ algebra and let $\{E_i\}$ be a sequence of elements in $\mathcal M$. Prove that $\bigcap_{i=1}^\infty E_i \in \mathcal M.$
- 7. Prove that if $m^*(A) = 0$, then $m^*(A \cup B) = m^*(B)$.
- 8. Let $\{E_i\}$ be a sequence of disjoint measurable sets and A be any set. Prove that :

$$m*\left(\mathbf{A}\cap\bigcup_{i=1}^{\infty}\mathbf{E}_{i}\right)=\sum_{i=1}^{\infty}m*(\mathbf{A}\cap\mathbf{E}_{i}).$$

9. Is the characteristic function $\chi_{(0,1)}$ measurable? Justify your answer.

- 10. Let f and g be measurable functions defined on a set E of finite measure. If f = g a. e., then F that $\int_{E} f = \int_{E} g$.
- 11. Let f be a measurable function. Prove that f^+ and f^- are measurable. Also prove that $f = f^+$
- 12. Let $\{f_n\}$ be a sequence of measurable functions such that $f_n \to f$ in measure. If $f_n \to f$ of Justify your answer.
- 13. For functions f and g, prove that $D_+(f+g) \le D_+f + D_+g$.
- 14. If f is absolutely continuous on [a, b] and if $f(x) \neq 0$ for all $x \in [a, b]$, then prove that $\frac{1}{f}$ is absolutely continuous on [a, b].

 $(14 \times 1 = 14 \text{ weigh})$

Part B

Answer any seven from the following ten questions. Each question has weightage 2.

15. Let $f(x, y) = \begin{cases} 0 & \text{if } (x, y) = (0, 0) \\ \frac{x^3}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \end{cases}$ and u be any unit vector in \mathbb{R}^2 . Show that the direct

derivative $(D_u f)(0,0)$ exists.

- 16. Let [A]₁ be the matrix obtained from the matrix [A] by interchanging two columns. Prove det [A]₁ = det [A].
- 17. Prove that the outer measure is translation invariant.
- 18. Let E be a measurable set and let $\epsilon > 0$. Prove that there is an open set $O \supset E$ such $m^*(O \sim E) < \epsilon$.
- 19. Let E_1, E_2, E_n be a disjoint collection of measurable sets and let $\varphi = \sum_{i=1}^n a_i m(E_i)$. If $m(E_i) < \infty$

each i, then prove that $\int \varphi = \sum_{i=1}^{n} a_i m(\mathbf{E}_i)$.

- 20. Let $f:[0,1] \to \mathbb{R}$ be given by $f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ n & \text{if } x \text{ is irrational} \end{cases}$ where n is the number of zeros immediately after decimal point in the representation of x. Show that f is measurable and evaluate $\int_{[0,1]} f$.
- 21. Let $\{f_n\}$ be a sequence of non-negative measurable functions that converge to f and let $f_n \leq f$ for each n. Prove that $\int f = \lim_{n \to \infty} \int f_n$.
- 22. Show that if f is integrable over a measurable set E, then $|\int f| \le \int |f|$. When does equality occur? Justify your answer.
- 23. If f is of bounded variation on [a, b], then prove that f'(x) exists for almost all x in [a, b].
- 24. Prove that absolutely continuous functions on [a, b] are of bounded variation on [a, b].

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two from the following four questions.

Each question has weightage 4.

- 25. Let $E \subset \mathbb{R}^n$ be an open set and let $f: E \to \mathbb{R}^m$ be a mapping differentiable at a point $x \in E$. Prove that the partial derivatives $(D_j f_i)(x)$ exist and $f'(x) e_j = \sum_{i=1}^m (D_j f_i)(x) u_i$ where $1 \le j \le n$.
- 26. (i) Prove that there exists a non-measurable set.
 - (ii) Prove that Cantor set is of measure zero.
- 27. (i) Prove that for each $a \in \mathbb{R}$, the interval (a, ∞) is measurable.
 - (ii) Let f and g be non-negative measurable functions defined on a measurable set E. Prove that $\int_{E} f + g = \int_{E} f + \int_{E} g$.
- 28. (i) Let $\{f_n\}$ be a sequence of measurable functions that converges in measure to f. Prove that there is a subsequence $\{f_{n_k}\}$ that converges to f almost everywhere.
 - (ii) Let f be an integrable function on [a, b] and let $F(x) = F(a) + \int_{a}^{x} f(t) dt$. Prove that F'(x) = f(x) for almost all x in [a, b].