1	5	P	7	5	6
	-			-	v

(Pages: 2)

Name.....

Reg.No....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JULY 2016

(CUCSS - PG)

(Statistics)

CC15PST2C09-DESIGN AND ANALYSIS OF EXPERIMENTS

(2015 Admission)

Time: Three Hours

Maximum: 36 Weightage

PART A

(Answer all questions. Weightage 1 for each questions)

- 1. Explain the linear model of expectation.
- 2. What are estimable functions?
- 3. Define Analysis of variance. What are assumptions of ANOVA?
- 4. What do you mean by BLUE?
- 5. Define orthogonal contrasts of linear equations.
- 6. Develop the procedure for analysing a CRD with one observation per experimental unit.
- 7. Give an example of 5×5 Greco Latin Square Design.
- 8. Distinguish between inter and intra block analysis of a design.
- 9. Explain the situations where concomitant variable is recommendable?
- 10. What are resolvable BIBD. Give an example.
- 11. Define factorial experiments.
- 12. Write the layout of a 2³ factorial design.

(12*1=12 weightage)

PART B

(Answer any eight questions. Weightage 2 for each questions)

- 13. Show that in a linear model $(Y, A\theta, \sigma^2 I)$ the number of independent estimable parametric function belonging to the error.
- 14. What are the basic principles of design? Explain
- 15. Write a short note on model adequacy checking.
- 16. Define:
 - a) Symmetrical factorial experiment.
 - b) Asymmetrical factorial experiment.
- 17. Obtain an expression for the efficiency of LSD compared to RBD.
- 18. Write down the plan of a BIBD b=v=7, r=k=4 and λ =2.
- 19. State and derive the relations among the parameters of a BIBD.
- 20. What are Lattice designs?
- 21. Explain briefly the linear model and analysis of Youden square design.

- 22. In a 2⁵ factorial experiment arranged in 4 blocks each containing 8 plots, the interaction ABC,ADE and BCDE are to be confounded. Write down the treatments in the principal block. Explain also how the remaining blocks are generated.
- 23. Analyse the 2² factorial design with ANOVA table.
- 24. Distinguish between complete confounding and partial confounding with examples.

(8*2 = 16 weightag)

PART C

(Answer any two questions. Weightage 4 for each questions)

- 25. (a) Explain the blocking procedure for the fractional factorial $\frac{1}{2}(2^7)$ design in blocks 2^3 units
 - (b) Illustrate with an example how you would use the Yate's algorithm for analysis fractional factorials?
- 26. Derive the analysis of a BIBD and show that the efficiency of this design is less th unity when compared with RBD in term of estimating simple linear treatment contrasts.
- 27. (a) Define split plot design. Illustrate with an example.
 - (b) Derive the detailed analysis of a split plot design.
- 28. Write short notes on the followings:
 - a) Kruskell-Wallis Test
 - b) PBIBD
 - c) ANCOVA

(2*4 = 8 weightag)
