1	5	P	7	5	5
1	2	1		J	

(Pages: 2)

Name.....

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JULY 2016

(CUCSS - PG)

(Statistics)

CC15P ST2 C08 - PROBABILITY THEORY

(2015 Admission)

Time: Three Hours

Maximum: 36 Weightage

Part A Answer all questions

- 1. Define Distribution function of a random variable.
- 2. What is meant by independence of Random variables?
- 3. State Kolmogorov 0-1 Law.
- 4. Define Convergence almost sure.
- 5. Let $P[X_n = 0] = 1 n^{-r}$, $P[X_n = n] = n^{-r}$, $r \ge 2$, n = 1, 2, ... Show that $X_n \xrightarrow{a.s} 0$ but X_n does not converge to zero in r^{th} mean.
- 6. Define Kolmogorov's WLLN's.
- 7. Define submartingale and supermartingale.
- 8. Define convergence in rth mean.
- 9. Define characteristic function. Give two properties
- 10. State continuity theorem. Give application.
- 11. What is inversion theorem?
- 12. State Lindberg-Feller Central Limit theorem

(12*1=12 weightage)

Part B Answer any eight questions

- 13. Show that conditional probability is a particular case of conditional expectation.
- 14. If $X_n \stackrel{P}{\to} X$ and g is a continuous real valued function, then show that $g(X_n) \stackrel{P}{\to} g(X)$. 15. Does the WLLN's hold for the following sequence of independent random variables
- $P[X_n = \pm 1] = \frac{1}{2}$

$$F_n(x) = 0$$
, if $x < n$
= 1, if $x \ge n$.

- 17. If $X_n \stackrel{a.s}{\to} X$, show that $X_n \stackrel{P}{\to} X$.
- 18. State and prove Borell Cantelli Lemma
- 19. Let $\{X_n\}$ be a sequence of i.i.d. random variables with common mean μ . Then Show that, $\frac{S_n}{N} \to \mu$ in probability as $n \to \infty$.
- 20. State and prove Kolmogrov's three series criterion.

(Pages:2/2)

21. Let $\{X_n, Y_n\}$ be a sequence of pairs of random variables with $X_n \stackrel{L}{\to} X$ and $Y_n \stackrel{P}{\to} c$. Show that $X_n.Y_n \stackrel{L}{\to} cX$, if $c \neq 0$ and $X_n.Y_n \stackrel{p}{\to} 0$, if c=0, and $X_n.Y_n \stackrel{L}{\to} X/Y$, if $c \neq 0$ 22. If $\{X_n\}$ be a sequence of i.i.d. random variables with common mean μ and finite fourth

moment, then $P\left\{\lim_{n\to\infty}\frac{S_n}{n}=\mu\right\}=1$. 23. If r^{th} absolute moment of characteristic function is differentiable r times and hence show

that $\Phi^{r}(0) = i^{r} \mu'_{r}$

24. Show that product of two characteristic function is also a characteristic function.

(8 * 2 = 16 Weightage)

Part C Answer any two questions.

25. (a) Show that {X_n} converges in probability to a random variable if and only if it is Cauchy in probability

(b) Show that $\{X_n\}$ Cauchy in mean implies $\{X_n\}$ Cauchy in probability.

26. State and prove Kolmogrov's SLLN's.

27. (a) State and prove Lyaponouv Central Limit Theorem

(b) Check whether $\varphi_x(t) = e^{|t|}$, and $\varphi_x(t) = 1/2(1 + e^{it})$, are characteristic function

28. State and prove Radon-Nikodym theorem.

(2*4=8 Weightage)