1	P	a	0	e	S	:	2	1

Name		 	
Reg.N	0		

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JULY 2016 (CUCSS - PG)

(Physics)

CC 15P PHY2 C05 - QUANTUM MECHANICS - I (2015 Admissions)

Time: Three Hours Maximum: 36 Weightage

Section A

Answer all questions
Each question has weightage of 1.

- 1. Compare Commutator brackets and Poisson brackets.
- 2. Write down the Hamiltonian for L.H.O., in momentum representation.
- 3. Plot the wavefunction of L.H.O., for the first four cases.
- 4. What are spherical harmonics.
- 5. What is the choice of phase, during angular momentum addition.
- 6. Give the algebra obeyed by Pauly spin matrices.
- 7. Introduce the concept of spin angular momentum as a postulate in Quantum Mechanics.
- 8. Discuss the orthogonality property of C.G. Coefficients.
- 9. Show that two identical fermions cannot occupy a single state.
- 10. Discuss the symmetry under time reversal.
- 11. Define differential and total scattering cross section.
- 12. What are partial waves.

 $(12 \times 1 = 12 \text{ weightage})$

Section B

Answer any two question Each question has weightage of 6.

- 13. Solve the Hydrogen atom problem. Obtain the eigen functions and eigen values.
- 14. Obtain the eigen values of the angular momentum operators J^2 and J_z . Work out their matrix representations.
- 15. How symmetry leads to conservation laws. Discuss various consevation laws and obtain the operators in each case.
- 16. What is Born approximation. Obtain an expression for the scattering cross-section for a beam scattered by a rigid sphere.

 $(2 \times 6 = 12 \text{ weightage})$

Section C

Answer any four questions
Each question has weightage of 3.

- 17. Obtain the zero point energy of a linear harmonic oscillator, using uncertainty principle.
- 18. Show that Slater determinant leads to Pauly's exclusion principle.
- 19. For L.H.O. ladder operators \hat{a} and \hat{a}^{\dagger} show that $[\hat{a},\hat{a}^{\dagger}]=1$
- 20. Evaluate the C-G coefficient involved in angular momentum coupling of two spin half particles.
- 21. Establish the following commutation relations for the components of angular and linear momenta:

$$[L_i, p_j] = i\hbar \epsilon_{ijk} p_k$$

Hence show that [L, p] = 0

22. In the Born approximation, calculate the scattering amplitude for scattering from the square well potential $V(r) = -V_0$ for $0 < r < r_0$ and V(r) = 0 for $r > r_0$

 $(4 \times 3 = 12 \text{ weightage})$
