15P203	(Pages: 2)	Name
		Reg.No

SECOND SEMESTER M.Sc.DEGREE EXAMINATION, JULY 2016

(CUCSS-PG) (Mathematics)

CC 15P MT2 C08-Topology - I

(2015 Admission)

Time: 3 Hrs Maximum: 36 Weightage

Part-A

Answer all questions
Each question has weightage 1.

- 1. Find the open sets in cofinite topology space.
- 2. Distinguish between base and sub-base of a topological space.
- 3. Define embedding of a topological space into another.
- 4. Give an example of a connected subset C of \mathbb{R}^2 such that \mathbb{R}^2 -C has infinitely many components.
- 5. Give an example of a topological space that is T_0 but not T_1 .
- 6. Determine open sets in the set of real numbers with usual topology.
- 7. Prove that every compact Hausdorff space is a T₃ space.
- 8. Give an example of a space in which every compact subset is closed but which is not Hausdorff.
- 9. Define component of a space. Also find the components of a discrete space.
- 10. Give an example for a second countable space.
- 11. Find all dense subsets of R with usual topology.
- 12. Determine the topology induced by a discrete metric on a set.
- 13. Determine the convergent sequences in a cocountable topological space.
- 14. Give an example of connected space which is not locally connected.

 $(14 \times 1 = 14 \text{ weightage})$

Part-B

Answer any seven questions
Each question has weightage 2.

- 15. Prove that a discrete space is second countable if and only if the underlying set is countable.
- 16. Prove that every open cover of a second countable space has a countable subcover.
- 17. For a subset A of a space X, prove that $\bar{A} = A \cup A'$.
- 18. Prove that every separable space satisfies the countable chain condition.
- 19. Prove that every quotient space of a locally connected space is locally connected.
- 20. Prove that the product topology is the weak topology determined by the projection functions.
- 21. Prove that a subset of R is connected if and only if it is an interval.
- 22. Prove that a connected T₄ space with at least two points must be countable.

- 23. Prove that the composition of continuous function is continuous.
- 24. Suppose a topological space X has the property that for every closed subset A of X, e continuous real valued function on A has a continuous extension to X. Then show that is normal.

 $(7 \times 2 = 14 \text{ weightage})$

Part-C

Answer any two questions Each question has weightage 4.

- 25. Prove that every regular, Lindeloffe's space is normal.
- 26. Prove that
 - (a) Every continuous real valued function on a compact space is bounded and attains i extrema.
 - (b) Every completely regular space is regular.
- 27. State and prove Tietze extension theorem.
- 28. State and prove Urysohn lemma.

 $(2 \times 4 = 8 \text{ weightag})$
