SECOND SEMESTER M.Sc. DEGREE EXAMINATION, MAY-2017

(Regular/Supplementary/Improvement)

(CUCSS-PG) CC15P PHY2 C08 - COMPUTATIONAL PHYSICS

(Physics)

(2015 Admission Onwards)

Time: Three Hours

Section A Answer all questions

- 1. Discuss the main features of Python language
- Explain different data types in python.
- 3. What is a function? How user defined functions are handled in Python?
- 4. Discuss file operations in Python.
- 5. Explain different methods of creating arrays in Python.
- 6. How matrices can be saved and restored using Python?
- 7. Discuss any one method of solving simultaneous equation using Python.
- 8. What are sub-plots? How sub-plots are created using Python.
- 9. What are polar plots? How is it generated in Python?
- 10. Discuss the interpolation with cubic spline and give its merits.
- 11. What is the importance of sampling? What is its importance in numerical integration?
- 12. What are the steps involved in simulating a physical problem?

 $(12 \times 1 = 12 \text{ weightage})$

Maximum: 36 Weightage

Section B Answer any two questions

- 13. Discuss with necessary examples, the different methods of implementing selection (conditional) structure in Python.
- 14. (a) Explain various functions used in matplotlib for visualisation in python. (b) Write a Python program for plotting Gamma function.
- 15. With suitable example explain the shooting and relaxation methods. What are the advantages of Relaxation Method over Shooting method?

16. (a) Explain the fourth order Runge-Kutta method for solving differential equations. (b) Develop a program for solving driven LCR circuit problem using Runge-Kutta method.

тюс-у АМ, иоттаинма ха заярая дел матгаты (2 x 6 = 12 weightage)

Section C Answer any four questions

- 17. With necessary theory, write a Python program for evaluating cos(x) using Taylor series expansion accurate for four decimal places.
- 18. Write a program for solving and printing the solution of a set of simultaneous equations of three variables by entering the coefficients as input.
- 19. Find the inverse of a function $f(x) = -\frac{1}{3}x + 1$
- 20. Given $S(x) = \begin{cases} x^3 + ax^2 4x + c & 0 \le x \le 2 \\ -x^3 + 9x^2 + bx + 34 & 2 \le x \le 4 \end{cases}$ Find the constants a, b and c such that S(x) is twice continuously differentiable on the interval [0, 4]
- 21. Write a Python program to simulate the central force motion
- 22. With necessary theory discuss a Python program to simulate radioactivity using Monte-Carlo method and compare with standard theoretical expression.

 $(4 \times 3 = 12 \text{ weightage})$

0. Discuss the interpolation with cubic spline and give its merits.

12. What are the steps involved in simulating a physical problem?

 $(12 \times 1 = 12 \text{ weightage})$

Section B Answer any neg question

- 13. Discuss with necessary examples, the different methods of implementing selection
- 4. (a) Explain various functions used in matplotlib for visualisation in python. (b) Write a
 - 15. With suitable example explain the shooting and relaxation methods. What are the