1	1	TD/	90	4
	0	Р.	20	н

(Pages: 2) Name.....

Reg.No.....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, MAY-2017

(Regular/Supplementary/Improvement) (CUCSS - PG)

(Mathematics)

(2015 Admission Onwards)

Time: Three Hours

Maximum:36 Weightage

Part A

Answer all questions habon not applied to the restaurance

Each question carries 1 weightage.

- 1. Let E be an extension field of a field F. Let ∝∈E be algebraic over F. Define irreducible polynomial for ∝ over F.
- 2. Prove that the field C of complex numbers is an algebraically closed.
- 3. Check whether $\propto = \sqrt{1 + \sqrt{3}}$ is algebraic over Q.
- 4. Prove that trisecting the angle is impossible.
- 5. Find the primitive 10 th root of unity in Z₁₁. The primitive 10 th root of unity in Z₁₁.
- 6. Find the splitting field of $x^3 2$ over Q.
- 7. Find all conjugates in C of $\sqrt{1+\sqrt{2}}$ over Q.
- 8. Let K be a finite normal extension of F and let E be an extension of F, where $F \le E \le K \le \overline{F}$. Prove that K is a finite normal extension of E.
- 9. Find $\Phi_8(x)$ over Q.
- 10. Find $\{Q(\sqrt{2}, \sqrt{3}): Q\}$
- 11. State isomorphism extension theorem.
- 12. Describe the group of the polynomial of $x^3 1$ over Q.
- 13. Show that the polynomial $x^5 2$ is solvable by radicals over Q.
- 14. Determine whether there exist a finite field having 68921 number of elements.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer **any seven** questions Each question carries 2 weightage.

- 15. Describe the field $Z_2[x]/< x^2 + x + 1 > 0$
- **16.** Prove that an ideal $\langle p(x) \rangle \neq \{0\}$ of F[x] is maximal iff p(x) is irreducible over F.
- 17. If E is a finite extension field of a field F and K is a finite extension field of E, Prove that K is a finite extension of F and [K:F] = [K:E][E:F].

- 18. If F is a field of prime characteristic p with algebraic closure \overline{F} , prove that $x^{p^n} x$ has p^n distinct zeros in \overline{F} .
- 19. If $\sqrt{a} + \sqrt{b} \neq 0$, Show that $Q(\sqrt{a} + \sqrt{b}) = Q(\sqrt{a}, \sqrt{b})$, $\forall a, b \in Q$.
- **20.** Describe the group $G(Q(\sqrt{2},\sqrt{3})/Q)$
- **21.** Let \overline{F} and $\overline{F'}$ be two algebraic closures of F. Prove that \overline{F} is isomorphic to $\overline{F'}$ under an isomorphism leaving each element of F fixed.
- 22. Prove that the Galois group of the n^{th} cyclotomic extension of Q has $\emptyset(n)$ elements and is isomorphic to the group consisting of the positive integers less than n and relatively prime to n under multiplication modulo n.
- 23. If $E \le \overline{F}$ is a splitting field over F, Prove that every irreducible polynomial in F[x] having a zero in E splits in E.
- **24.** Let K be a splitting field of x^4+1 over Q. Show that G(K/Q) is of order 4.

 $(7 \times 2 = 14 \text{ weightage})$

Part C = $\sqrt{1 + \sqrt{3}}$ is algebraic O and

Answer any two questions along add gnides in that every 4. Each question carries 4 weightage.

- 25. Let R be a commutative ring with unity. Prove that M is a maximal ideal of R if and only if R/M is field.
- 26. State and prove conjugation isomorphism theorem
- 27. Prove that a finite separable extension of a field is a simple extension.
- 28. Let R be a commutative ring with unity then prove that M is a maximal ideal of R if and only if R/M is a field. [O:(EV, SV)O] build

O ray of $-\infty$ to information and $(2\times4=8 \text{ weightage})$

13. Show that the polynomial x - 2 is solvable ******

mmi1768

Part R

Answer any seven questions

ach question carries 2 weightage

15. Describe the field $Z_2[x]/\sqrt{2+x+1}$

5. Prove that an ideal $\langle p(x) \rangle \neq \{0\}$ of F[x] is maximal iff p(x) is irreducible over F.

7. If E is a finite extension field of a field F and K is a finite extension field of E. Prove that is a finite extension of F and [K:F] = [K:E][E:F].