Name..... Reg. No....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, MAY-2017

output on (Regular/Supplementary/Improvement)

(CUCSS - PG)

CC15P ST2 C06 - ESTIMATION THEORY
(Statistics)

(2015 Admission Onwards)

Time: Three Hours

Maximum: 36 Weightage

PART A

(Answer all questions. Weightage 1 for each question)

- 1. Define sufficient estimator.
- 2. How will you quantify the information about the parameter that contained in a random variable?
- 3. Explain the concept of Consistency.
- 4. Distinguish between point estimation and interval estimation.
- 5. Define loss function. What are the different types of loss functions?
- 6. Define complete family of distributions.
- 7. Define MLE. Prove or disprove: MLE's are consistent
- 8. Give an example of sufficient statistic which is not a minimal sufficient.
- 9. Distinguish between Bayesian and Fiducial intervals.
- 10. Define shortest length confidence interval.
- 11. Define one parameter exponential family of distribution. Give an example of distribution which is not a member of this family.
- 12. Distinguish between marginal consistency and joint consistency

(12x1=12 weightage)

PARTE

(Answer any eight questions. Weightage 2 for each question)

- 13. Define CAN estimator. Let $X \sim P(\lambda)$. Find CAN estimator of $e^{-\lambda}$.
- 14. State and prove factorization criteria on sufficiency.
- 15. Let $X_1, X_2, ..., X_n$ be i.i.d observations from $N(\theta, 1)$. Show that $T = \sum_{i=1}^n X_i$ where l_i are real constants, is sufficient for θ if and only if $l_1 = l_2 = ..., l_n$.
- 16. State and prove Cramer-Rao inequality.

- 17. Explain method of moment estimation. Prove or disprove: Moment estimators are always
- 18. Define completeness. If T is complete, Show that any one to one function of T is
- 19. Explain the general principle of constructing Bayesian confidence interval.
- 20. State and Prove Lehmann-Scheffe theorem.
- 21. Let $X_1, X_2, ..., X_n$ be a sample from $U\left(\theta \frac{1}{2}, \theta + \frac{1}{2}\right)$. Show that $T = \left(Min(X_1, X_2, ..., X_n), Max(X_1, X_2, ..., X_n)\right) \text{ is sufficient for } \theta \text{ but not complete.}$
- 22. Show that under squared loss function, the Bayes estimator is the mean of posterior
- 23. Define Pivot. Describe the method of construction of confidence interval using pivot.
- (8x2=16 weightage) 24. State and prove invariance property of MLE.

PART C

(Answer two questions. Weightage 4 for each question)

- 25. (a) Find the $100(1-\alpha)\%$ shortest length confidence interval for θ when $X \sim N(\theta, 1)$.
 - (b). Suppose $X_1, X_2, ..., X_n$ be a sample from $f(x; \theta) = e^{-(x-\theta)}, x > 0, \theta > 0$ and the prior distribution of θ is $f(\theta) = e^{-\theta}$, $\theta > 0$. Determine the Bayes estimator of θ under
- 26. Let $X_1, X_2, ..., X_n$ be a random sample of size n from $N(\mu, \sigma^2)$. Let $T_n = \bar{X}$ and $T_n^* =$ $\frac{n}{n+1}\bar{X}$. Show that both T_n and T_n^* are CAN estimators. Which of these estimators is best estimator? Obtain the efficiency of the other estimator relative to the best estimator.
- 27. (a). Define UMVUE. Find UMVUE of $P(X \le u)$, when $X \sim N(\theta, 1)$.
 - (b). Under regularity conditions to be stated, Prove that MLE's are CAN estimators.
- 28. (a). State and prove Rao-Blackwell theorem.
 - (b). Find the lower bound for the variance of an unbiased estimator of θ , when $f(x; \theta) =$ (2x4=8 weightage) $\theta(1-\theta)^x$, x = 0,1,2 ... and $0 < \theta < 1$.