16P205

(Page: 2)

Name.....

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, MAY-2017

(Regular/Supplementary/Improvement)

 $(qbom)0 \equiv p(1-) + p(1-) + p(CUCSS - PG)$

CC15P MT2 C10 - NUMBER THEORY

(Mathematics)

(2015 Admission Onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer All Questions. Each Question Carries One Weightage

- 1. Define the derivative of an arithmetical function, hence find out u' in terms of Mangoldt function $\Lambda(n)$.
- 2. Prove that the equation $f(n) = \sum_{d/n} g(d)$ implies $g(n) = \sum_{d/n} f(d) \mu\left(\frac{n}{d}\right)$
- 3. Show that for $n \ge 1$, $\log n = \sum_{d/n} \Lambda(d)$
- 4. Prove that [2x] 2[x] is either 0 or 1.
- 5. Give an example of an arithmetical function which is not multiplicative.
- 6. State Legendre's identity.
- 7. Show that, if (a, b) = d then there exists integers x and y such that ax + by = d.
- 8. Find all integers n such that $\varphi(n) = \frac{n}{2}$
- 9. Check whether Legendre symbol is completely multiplicative.
- 10. State quadratic reciprocity law and evaluate (5|383). And the state of the stat
- 11. Determine whether 117 is quadratic residue or non residue of 997.
- Prove that the product of two linear enciphering transformations is again a linear enciphering transformation.
- 13. Find the inverse of the matrix $A = \begin{pmatrix} 15 & 17 \\ 4 & 9 \end{pmatrix} \pmod{26}$
- 14. Find a formula for the number of different affine enciphering transformations on single letter message units in an N-letter alphabet. (14x1=14 Weightage)

Part B

Answer Any Seven Questions. Each Question Carries Two Weightage

- 15. Show that if $n \ge 1$ then $\sum_{d/n} \varphi(d) = n$
- 16. Assume f is multiplicative. Prove that $f^{-1}(n) = \mu(n)f(n)$ for every square free n.

- 17. If $x \ge 1$, prove that $\sum_{n \le x} \frac{1}{n} = log x + C + O\left(\frac{1}{x}\right)$
- 18. Show that $\lim_{x\to\infty} \frac{\pi(x)\log x}{x} = 1$ and $\lim_{x\to\infty} \frac{\vartheta(x)}{x} = 1$ are logically equivalent.
- 19. State Abel's identity and deduce Euler's summation formula.
- 20. Let p be an odd prime and let $q = \frac{p-1}{2}$, prove that: $(q!)^2 + (-1)^q \equiv 0 \pmod{p}$
- 21. Prove that $(2|p) = (-1)^{\frac{p^2-1}{8}}$, where p is an odd prime.
- 22. State and prove Euler-Fermat theorem.
- 23. Solve the following system of simultaneous congruences:

$$9x + 20y \equiv 10(mod29)$$

 $16x + 13y \equiv 21 \pmod{29}.$

24. Find the discrete log of 28 to the base 2 in F_{37}^* using the Silver-Hellman algorithm.

p(d) implies $g(n) = \sum_{d/n} f(d) \mu\left(\frac{n}{d}\right)$

Answer Any Two Questions. Each Question Carries Four Weightage

- 25. Prove that the set of all arithmetical functions f with $f(1) \neq 0$ forms an abelian group under Dirchlet multiplication.
- 26. Prove that the set of lattice points visible from the origin contains arbitrarily large square gaps.
- 27. State and prove Shapiro's Tauberian theorem.
- 28. 1) Compare Private Key and Public Key Cryptosystems.
 - 2) Describe RSA Public key cryptosystem. (2x4=8 Weightage)

13. Find the inverse of the matrix $A = \begin{pmatrix} ******* \\ A & O \end{pmatrix}$ (mod 26)