16P204

(Pages: 2)

Name

Reg. No....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, MAY-2017

(Regular/Supplementary/Improvement)

(CUCSS - PG)

CC 15P MT2 C09 - PDE & INTEGRAL EQUATIONS

(Mathematics)

(2015 Admission Onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

(Answer all questions, each question has I weightage)

- Show that if there is a functional relation between two function $u(x,\,y)$ and $v(x,\,y)$ not involving x and y explicitly, then $\frac{\partial(u,v)}{\partial(x,y)} = 0$
- Find the partial differential equation by eliminating the parameters 'a' and 'b' from the equation $z = x + ax^2y^2 + b$.
- Determine the region D in which the two equations xp yq x = 0 and $x^2p + q - xz = 0$ are compatible.
- Explain Cauchy problem for a non linear equation.
- Determine the Monge cone in the case of $p^2 + q^2 = 1$ with vertex (0, 0, 0).
- Write the classification of the equation : $4u_{xx}-4u_{xy}\pm5u_{yy}\equiv0$
- Prove that the solution of the Dirichlet problem if it exist is unique
- State the Cauchy problem for the equation $Au_{xx} + Bu_{xy} + Cu_{yy} = F(x, y, u, u_x, u_y)$, where A, B and C are functions of x and y. Also give an example
- What is the Neumann problem for the upper half plane.
- 10. What is Riemann function?
- 11. Obtain the exact solution of $y(x) = \lambda \int_0^1 x \xi y(\xi) d\xi + 1$.
 - 12. If y''(x) = F(x) and y satisfies the initial conditions $y(0) = y_0$, $y'(0) = y'_0$, show that $y(x) = \int_0^x (x - \xi) F(\xi) d\xi + y_0' x + y_0.$
 - 13. Define separable kernel and give an example of it
 - 14. Determine the resolvent kernel associated with $K(x, \xi) = \cos(x + \xi)$ in $(0, 2\pi)$ in the form of power series in λ obtaining the first three terms

(14 x 1= 14 Weightage)

(Answer any seven from the following ten questions (15-24), each question has 2 weightage.

15. Find the general integral of the equation $z(xp - yq) = y^2 - x^2$ First the complete integral of the equation $(p^2 + q^2)y - qz = 0$ by Charpit's method

- 17. Solve by Jacobi's method the equation : $z^3 = pqxy$.
- 18. Find the integral surface of the equation $(2xy 1)p + (z 2x^2)q = 2(x yz)$ which passes through x = 1, y = 0, z = s.
- 19. Reduce the equation $u_{xx} 4x^2 u_{yy} = \frac{u_x}{x}$ into canonical form.
- 20. Solve $y_{tt} c^2 y_{xx} = 0$, 0 < x < 1, t > 0, y(0, t) = y(I, t) = 0, y(x, 0) = x(1 x), $0 \le x \le 1$, $y_t(x, 0) = 0$, $0 \le x \le 1$.
- 21. Show that the solution of the Neumann problem is unique up to the addition of a constant.
- 22. Transform the problem y''(x) + xy = 1; y(0) = y(1) = 0 to a Fredholm integral equation using Green's function.
- 23. Solve $y(x) = 1 + \lambda \int_0^1 (1 3x \xi) y(\xi) d\xi$, using Neumann series.
- 24. If $y_m(x)$ and $y_n(x)$ are characteristic functions of the equation with a real symmetric kernel corresponding respectively to two different characteristic numbers λ_m and λ_n of homogeneous Fredholm equation $y(x) = \lambda \int_a^b K(x, \xi) y(\xi) d\xi$, then prove that $y_m(x)$ and $y_n(x)$ are orthogonal over the interval (a,b).

(7 x 2= 14 Weightage)

Part C

(Answer any two from the following four questions (25-28), each question has 4 weightage)

- 25. Show that the pfaffian differential equation (1 + yz)dx + x(z x)dy (1 + xy)dz = 0 is integrable and find the corresponding integral.
- 26. Using the method of characteristics, find an integral surface of $p^2x + qy z = 0$ which passes through the curve x + z = 0, y = 1.
- 27. Show that the solution for the Dirichlet problem for a circle of radius *a* is given by the Poisson integral formula.
- 28. Consider the equation $y(x) = F(x) + \lambda \int_0^{2\pi} \cos(x + \xi) y(\xi) d\xi$.
 - (a) Determine the characteristic values of λ and the corresponding characteristic functions.
 - (b) Express the solution in the form $y(x) = F(x) + \lambda \int_0^{2\pi} /(x, \xi; \lambda) F(\xi) d\xi$ when λ is not characteristic.

 $(2 \times 4 = 8 \text{ Weightage})$