4	-	DA		-
1	6		-	A.
			- 1	. 7

(Pages: 2)

Reg. No.

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, MAY-2017

(Regular/Supplementary/Improvement)

(CUCSS - PG)

CC15P ST2 C08 - PROBABILITY THEORY IS NOT THE WORLD

(Statistics)

(2015 Admission Onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A Answer all questions

- 1. Define Convergence in probability of sequence of random variables.
- 2. Find the distribution function of a random variable with density $f(x) = \frac{1}{b-a}, a < x < b, 0 \text{ otherwise.}$
 - 3. Define mathematical expectation of real valued Borel function.
 - 4. Check Convergence almost sure of sequence of random variables, $P\left[X_n = \mp \frac{1}{n}\right] = 1/2$
 - 5. Show that $X_n \stackrel{p}{\to} X$, implies $X_n \stackrel{L}{\to} X$, n=1,2,...
 - 6. State Chebyshev's inequality for independent random variables.
 - 7. State Borell Cantelli Lemma.
 - 8. State correspondence theorem.
 - 9. Check whether $\phi(t) = \frac{1}{2}(1 + e^{3it})$ is a characteristic function.
 - 10. If ϕ is a characteristic function. Is $|\phi|$ a characteristic function.
 - 11. State Continuity Theorem.
 - 12. State Radon-Nikodyn theorem. Give one application.

(12 x 1=12 weightage)

Part B Answer any eight questions

- 13. State and prove Jordan-decomposition theorem.
- 14. Let $\{X_n\}$ be sequence of iid random variables. Then $X_n \stackrel{a.s.}{\hookrightarrow} 0$ if and only if $\sum_{n=1}^{\infty} P\{|X_n| > c\} < \infty$ for all $\epsilon > 0$.
- 15. State and prove Kolmogorov's WLLN's.
- 16. Examine the convergence of

$$F_n(x) = 0$$
, if $x < -n$
 $= \frac{1}{2} + c_n \tan^{-1}(cx)$, $-n \le x < n$
 $= 1$, if $x \ge n$.

17. If $X_n \stackrel{a.s.}{\longrightarrow} X$, show that $X_n \stackrel{P}{\longrightarrow} X$.

- 18. State and prove Borel 0-1 Law.
- 19. Show that $\{X_n\}$ convergence in probability to a random variable X if and only if it is Cauchy in probability.
- 20. Show that Borel functions of independent random variables are independent.
- 21. Let $\{X_n, Y_n\}$ be a sequence of pairs of random variables with $X_n \stackrel{L}{\to} X$ and $Y_n \stackrel{P}{\to} c$. Show that $X_n + Y_n \stackrel{L}{\to} X + c$ and $X_n Y_n \stackrel{L}{\to} cX$.
- 22. State and prove Lindeberg-Levy Central Limit theorem.
- 23. Prove that characteristic function is uniformly continuous on R.
- 24. Define conditional expectation and its properties.

 $(8 \times 2 = 16 \text{ Weightage})$

Part C Answer any two questions.

- 25. (a) Show that $\{X_n\}$ converges in probability to a random variable if it is converges in r^{th} mean
 - (b) Show that $\{X_n\}$ Cauchy in a.s. implies $\{X_n\}$ Cauchy in probability.
- 26. (a)State and prove Helly-Bray theorem
 - (b) Prove $\varphi_x(t) = e^{-t^4}$, and $\varphi_x(t) = (1 + t^4)^{-1}$, are not characteristic functions
- 27. State and prove Inversion theorem.
- 28. (a) State and prove Jordan decomposition theorem.
 - (b) State and prove the necessary and sufficient conditions for a function to be a distribution function.

 $(2 \times 4 = 8 \text{ Weightage})$

Part B Answer any sight anestions

State and prove Jordan-decomposition theorem.

 $\sum_{n=1}^{\infty} P\{|X_n| > c\} < \infty$ for all $\varepsilon > 0$.

15. State and prove Kolmogorov's WLLN

16. Examine the convergence of

 $F_n(x) = 0 , \quad \text{if} \quad x < -n$

 $\frac{1}{2} + c_n \tan^{-1}(cx)$, -n

17 TEV A V show that V A V