(Pages:2) Name.....

Reg.No....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, MAY 2017

(Regular/Supplementary/Improvement)

(CUCSS-PG)

(Chemistry)

CC15P CH2 C05 - APPLICATIONS OF QUANTUM MECHANICS AND **GROUP THEORY**

(2015Admission Onwards)

Time: Three Hours

Maximum:36 Weightage

Section A Answer all questions (1 weightage)

- 1. What is variation Theorem
- 2. Write down the slater determinant for Li atom.
- 3. What is Born-Oppenheimer approximation?
- 4. What is fock operator.
- 5. What is Roothan's concept of basis function.
- 6. Differentiate between STO and GTO.
- 7. Write the spectroscopic term symbol for C₂.
- 8. Arrange O₂, O₂ and O₂ in the increasing order of stability. Justify your answer.
- 9. You are given the integral $\int_{-a}^{+a} x^2 dx$. Check whether it is a vanishing integral or not.
- 10. Explain transition moment integral. How does it help in predicting spectroscopic transition?
- 11. State non crossing rule as applied to correlation diagrams.
- 12. Write the projection operator PA1 for C2V.

(12x1=12 Weightage)

Section B (Answer any eight questions) (2 weightage)

- 13. Using the trial wave function for the ground state of particle in a 1-D box as x²(x-a)² find out the energy using variation theorem. Does it represent the true ground state 26. Find out the ground state energy and wave function of He atom ?ygrana
- 14. Discuss the Frost -Hückel circle mnemonic device for cyclic polyenes.
- 15. Briefly discuss the Roothan's concept of basis functions.
- 16. Write a brief note of quantum mechanical treatment of sp³ hybridization
- 17. Taking bonding in CO draw correlation diagram. Discuss
- 18. Write the four possible spin and orbital combinations of ground state of He atom. Which one will be true representation of the ground state?

- 19. Compare the VB and MO treatment of molecules.
- 20. Explain HMO treatment of ethylene, to find the π bond energy.
- 21. H₂O belongs to C_{2v} point group. Find the symmetry species of MO's and arrange them.

C _{2v}	E	C2	σv	σv'	
A1	1	109110	ENOTE AL	OS - APPLIC	OZH
A2		HEORE Com	GROUP 015lctmis	s) -1	
B1	1	-1	1	-1	21
B2	विविधा ।)	чиезпоиз 1-	lla resean	Section A A	sitaina

- 22. Using group theory rationalize rule of mutual exclusion principle.
- 23. How do you explain Laporte selection rule using group theory.
- 24. Using 2P_x orbital on Cis butadiene find out the reducible representation and reduce it to irreducible representation. Use the C_{2v} character table in question 21.

(8x2=16 Weightage)

Section C (Answer any two questions) (Weightage 4)

25. Find the hybridization and molecular orbital diagram of CH_4 molecule. Use the T_d character table given below

	Td	E	8C ₃	3C ₂	6S ₄	6 o d	linear functions, rotations	quadratic functions
September 13	A_1	+1	+1	+1	+1	+1	-	$x^2+y^2+z^2$
	A ₂	+1	+1	+1	-1	-1	entor P., for Con	on anitoniona adt
Total section	E	+2	-1	+2	0	0	-	$(2z^2-x^2-y^2, x^2-y^2)$
Contrator Con	T_1	+3	0	-1 2	+1	-1	(R_x, R_y, R_z)	Section B
	T ₂	+3	0 51	h1sq	-1-1	+1,	(x, y, z) (x, y, z)	(xy, xz, yz)

- 26. Find out the ground state energy and wave function of He atom using variation theorem (Hint J = $5/8Z = \int_0^\infty rexp(-2Zr)dr = 1/2Z^2$). Doll-world at several A-1
- 27. Discuss briefly the self consistent filed method of solving many electron atoms.
- 28. Discuss briefly the LCAO method of bonding applied to hydrogen molecule ion.

(2x4=8 Weightage)
