D	71	3	4	0
_	-		- Alle	v

(Pages: 2)

	')	1
Name	F	1

Reg. No....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Physics

PHY 3E 07—EXPERIMENTAL TECHNIQUES

(2012 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

Section A

Answer all questions. Each question carries 1 weightage.

- 1. Discuss the variation of pumping speed with pressure for a rotary pump.
- 2. Explain briefly the principle of operation of a turbo molecules pump.
- 3. What are gaskets? Explain its use.
- 4. Explain Knudsen cosine law.
- 5. What are multilayer films? Give their importance.
- 6. Briefly explain the principle and operation of Dewaro Hydrogen liquefies.
- 7. What are the main problems in the storage of liquid helium?
- 8. What are the advantages of r.f. acceleration over electrostatic acceleration?
- 9. How does a synchrotron overcome the difficulties experienced in a cyclotron?
- 10. State and explain Bragg's law.
- 11. Explain the operation of Debye Scherrer Camera.
- 12. List and explain the different sources of fast neutrons for NAA measurements.

 $(12 \times 1 = 12 \text{ weightage})$

Section B

Answer any **two** questions. Each question carries 6 weightage.

- 13. Explain the principle and working of Hot flament ionization gauge. Mention the pressure ranges in which these gauges are used.
- 14. Describe the experimental set up, for the measurement of the electrical conductivity of thin films. Define thermopower and its utility.

Turn over

D 713

- 15. Explain the principle of the adiabatic demagnetization method for obtaining temperature below.

 IK. Draw a neat sketch of the apparatus used and discuss the details of the method used.
- 16. Describe the principle of the PIXE technique. What are its distinctive features? Give the details its working and compare it with other methods.

 $(2 \times 6 = 12 \text{ weighta})$

Section C

Answer any four questions.

Each question carries 3 weightage.

- 17. A vacuum pump with speed of 1000 litres per sec is connected to a chamber with an outgass rate of 10^{-4} Ton litres s. What is the expected ultimate pressure?
- 18. The thin film is used in an interferometer for thickness measurement. If the wave length of li used is 435.8 nm calculate the shift in the fringe. Assume $\mu = 1.5$ and thickness as $t \mu$ -m.
- 19. One mole of O_2 expends at a constant temperature of 310 K from an initial volume of 12 litres final volume of 19 litres. Calculate the final pressure of the starting value is 2 atmospheres. If gas were expended adiabatically, calculate the final temperature and pressure achieved, gi that $\gamma = 1.4$.
- 20. Alpha particle with K.E. 1.7 MeV are scattered by the coulomb field of a stationary Pb nucle (A = 208). Calculate the differential cross-section for the scattering through in angle 60°.
- 21. The calibration constant K for a particular trace element using PIXE set up was 2548 con $/\mu$ gm/ μ c. For the internal standard element used with a concentration of 100 ppm, the corresponding value is 515. Evaluate the concentration of the trace element considered.
- 22. Describe briefly how thermomagnetic effect used to produce very low temperature.

 $(4 \times 3 = 12 \text{ weight})$