(Pages: 2)

Name......Reg. No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Mathematics

MT 3C 12-FUNCTIONAL ANALYSIS I

: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Show that the metric space l^2 is not separable.
- 2. Show that every convergent sequence in a metric space is Cauchy.
- 3. Define n^{th} Dirichlet Kernel D_n and show that $\int_{-\Pi}^{\Pi} |D_n(t)| dt \to \infty$ as $n \to \infty$.
- 4. Show that the norm function on a normed linear space is continuous.
- 5. Show that the closed unit ball in l^2 is convex.
- 6. Let X be a normed space and P ϵ BL (X) satisfy $P^2 = P$. Show that ||P|| = 0 or $||P|| \ge 1$.
- 7. State Gram-Schmidt orthonormalization theorem.
- 8. Let $\{U_{\alpha}\}$ be an orthonormal set in an inner product space X and $x \in X$. Show that : $E_x = \{u_{\alpha} : \langle x, u_{\alpha} \rangle \neq 0\} \text{ is a countable set.}$
- 9. Let X be an inner product space. Let $E \subset X$ and $x \in \overline{E}$. Show that there exists a best approximation from E to x iff $x \in E$.
- 10. Let X be a complex normed linear space and $A: X \to X$ be a linear map. Show that for all $x, y \in X$,

$$4 \langle A(x), y \rangle = \langle A(x+y), x+y \rangle - \langle A(x-y), x-y \rangle$$
$$+ i \langle A(x+iy), x+iy \rangle - i \langle A(x-iy), x-iy \rangle.$$

- 11. State Hahn-Banach separation theorem.
- 12. With usual notations, show that C_o (T) is a Banach subspace of C (T).
- 13. Show that every finite dimensional normed space is separable.
- 14. State uniform boundedness principle.

 $(14 \times 1 = 14 \text{ weightage})$

Turn over

Part B

Answer any seven questions. Each question carries 2 weightage.

- 15. Show that a non-empty subset of a separable metric space is separable in the induced metric.
- 16. Show that the set of all simple measurable functions on a measurable subset E of R is dense in $L^{\alpha}(E)$.
- 17. Let X be a normed space. Show that if the subset $\{x \in X : ||x|| \le 1\}$ of X is compact then X is finite dimensional.
- 18. Show that a linear functional f on a normed space X is continuous iff Z(f) is closed in X.
- 19. Let X and Y be inner product spaces. Show that a linear map $F: X \to Y$ satisfies $\langle F(x), F(y) \rangle = \langle x, y \rangle$ for all $x, y \in X$ iff it satisfies ||f(x)|| = ||x|| for all $x \in X$, where the norms on X and Y are induced by the respective inner products.
- 20. State and prove Bessel's inequality.
- 21. Let X be an inner product space over K. Let $0 \neq x_1 \in X$ and $c_1 \in K$. Show that the element $x \in X$ of minimal norm satisfying $\langle x, x_1 \rangle = c_1$ is $c_1 x_1 / \langle x_1, x_1 \rangle$.
- 22. Let X be a normed space over K, Y be a subspace of X and $g \in Y'$. Show that there is some $f \in X'$ such that f/y = g and ||f|| = ||g||.
- 23. Show that a normed space can be embedded as a dense subspace of a Banach space.
- 24. Let X be a normed space and E be a subset of X. Show that E is bounded in X iff f(E) is bounded in K for every $f \in X'$.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries 4 weightage.

- 25. Let E be a measurable subset of R. Show that, for $1 \le p \le \alpha$, the metric space L^p (E) is complete.
- 26. Let Y be a closed subspace of a normed space X. For $x + \dot{Y}$ in the quotient space \dot{X}_Y , let: $||x+Y|| = \inf\{||x+y|| : y \in Y\}$.

 Show that ||| ||| is a norm on \dot{X}_Y further show that a sequence $(x_n + Y)$ converges to x + Y in \dot{X}_Y iff there is a sequence (y_n) in Y such that $(x_n + y_n)$ converges to x in X.
- 27. Show that a non-zero Hilbert space H is separable iff H has a countable orthonormal basis.
- 28. Let $X = \{x \in C([-\pi, \pi]) : x(\pi) = x(-\pi)\}$ with the sup norm. Show that the Fourier series of ever x in a dense subset of X diverges at 0. $(2 \times 4 = 8 \text{ weightage})$