(Pages: 3)

Ivan	1e
Reg.	No

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014 (CUCSS)

Mathematics

MT 3C 14—LINEAR PROGRAMMING AND ITS APPLICATIONS

Three Hours Maximum: 36 Weightage

Part A (Short Answer Type)

Answer all the questions. Each question carries weightage 1.

- Is union of two convex sets a convex set? Justify your answer.
- Prove that a hyperplane is a convex set.
- Is the function f(x) = x, $x \in \mathbb{R}$, a convex function? Justify your answer.
- Find the Hessian of f(X) where $f(X) = x_1^3 + 2x_2^3 + 3x_1 x_2 x_3 + x_3^2$.
- Define the dual of a linear programming problem. Give an example.
- What is meant by loops in a transportation array?
- Describe the concept of degeneracy in transportation problem.
- Describe the generalized transportation problem.
- Describe the 0-1 variable problems in integer programming.
- Define artificial variables. Describe the uses of artificial variables in solving linear programming problems.
- Describe the fixed charge problem in integer programming.
- Describe the concept of primal and dual problems in optimization theory.
- Describe the notion of dominance in game theory.
- Describe matrix games.

Part B (Paragraph Type)

Answer any **seven** questions. Each question carries weightage 2.

- Obtain a necessary and sufficient condition for a differentiable function in a convex domain to convex.
- 16. Find the convex hull of the points (1, 0, 0), (0, 1,0) and (0,0,1) in E₃.
- 17. Use the method of Lagrange multipliers to find the maxima and minima of $x_2^2 (x_1 + 1)^2$ subjute $x_1^2 + x_2^2 \le 1$.
- 18. Show that the function

$$f(x) = x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1 x_2 + 4x_1 x_3 + 16x_2 x_3$$
 has a saddle point at the origin.

- 19. Define a polytope. Prove that a point X_v , of a polytope is a vertex if and only if X_v , is the ormember of the intersection set of all the generating hyperplanes containing it.
- 20. Describe unbalanced transportation problem.
- 21. Prove that the transportation problem has a triangular basis.
- 22. Describe the rectangular game as a Linear programming problem.
- 23. Write the general form of an integer linear programming problem.
- 24. State and prove the mini max theorem in theory of games.

Part C (Essay Type)

Answer any **two** questions. Each question carries weightage 4.

25. Solve the following problem using simplex method:

Maximize
$$5x_1 - 3x_2 + 4x_3$$

subject to
$$x_1 - x_2 \le 1$$

 $-3x_1 + 2x_2 + 2x_3 \le 1$
 $4x_1 - x_3 = 1$
 $x_1 \ge 0, x_2 \ge 0$

 x_3 unrestricted in sign.

26. Solve the transportation problem for minimum cost with cost coefficients, demands and supplies as given in the following table. Obtain three optimal solutions.

	D_1	D_2	D_3	D_4	
01	1	2	-2	3	70
02	2	4	0	1	38
O ₃ 1	1	2	-2	5	32
	40	28	30	42	

27. Solve the following integer linear programming problem:

Maximize
$$\phi(X) = 3x_1 + 4x_2$$

subject to
$$2x_1 + 4x_2 \le 13$$

 $-2x_1 + x_2 \le 2$
 $2x_1 + 2x_2 \ge 1$
 $6x_1 - 4x_2 \le 15$
 $x_1, x_2 \ge 0$

 x_1 and x_2 are integers.

28. Solve the game where the payoff matrix is:

$$\begin{pmatrix} 1 & -1 & 2 \\ 2 & 3 & 1 \end{pmatrix}.$$