(Pages: 2)

Reg. No.

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Physics

PHY 3C 10-NUCLEAR AND PARTICLE PHYSICS

(2012 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

Section A

Answer all questions.
Each question carries 1 weightage.

- 1. What is mass defect and how will you correlate it with packing fraction?
- 2. Write down semi-emperical mass formula and explain the different terms in it.
- 3. Explain Electric quadrapole moment of a nucleus.
- 4. What are the predictions of shell model?
- 5. Explain how collective model explains nuclear vibrations.
- 6. Explain Kuril plot.
- 7. Define internal conversion coefficient and explain its significance.
- 8. Briefly explain the various conservation laws in nuclear reactions.
- 9. Explain the terms spontaneous fission and induced fission.
- 10. What is a thermonuclear reaction? Illustrate it with an example.
- 11. Briefly explain Quark flavours and colours.
- 12. Write a note on quantum chromo dynamics.

 $(12 \times 1 = 12 \text{ weightage})$

Section B

Answer any **two** questions. Each question carries 6 weightage.

- 13. Discuss the deutron system in detail considering it as a rectangular square well potential and deduce an expression for the radius of the deutron.
- 14. Derive an expression for the total magnetics moment of the nucleus and explain it with the help of Schmidt diagram.

Turn over

- 15. Using Fermi's theory of β -decay explain allowed and forbidden β -transitions.
- 16. Discuss the various conservation laws in particle interaction.

 $(2 \times 6 = 12 \text{ weightage})$

Section C

Answer any four questions. Each question carries 3 weightage.

- 17. Compute the mass defects of:
 - (a) ^{32}S ; (b) ^{20}F ; (c) ^{238}U .
- 18. Determine the harmonic oscillator frequencies w appropriate to the nuclei ¹⁷O and ⁶⁰Ni.
- 19. Prove that for $E_m \ll m_e c^2$, the mean kinetic energy of the 13-particle is equal to $E_m/3$.
- 20. For the following endoergic reactions, find the Q value and the threshold kinetic energy, assuming in each case that the lighter particle is incident on the heavier particle at rest.
 - (a) $^{7}\text{Li} + P \rightarrow ^{7}\text{Be} + n$
 - (b) ${}^{12}C + P \rightarrow n + {}^{12}N$.
 - (c) $^{35}\text{Cl} + \alpha \rightarrow n + ^{38}\text{K}$.
- 21. Consider a typical reaction during the neutron induced fission of ²³⁵₉₂U, namely

$$n + \frac{235}{92} \text{U} \rightarrow \frac{236}{92} \text{U}^* \rightarrow \frac{98}{40} \text{Z}_{\text{r}} + \frac{136}{52} \text{T}_{\text{e}} + 2n$$

The following fission fragments are far from stability region and decay into stable end products $^{98}_{42}M_{_0}$ and $^{136}_{52}X_{e}$ by successive emission of β -particles calculate total energy that will be released in this fission reaction.

- 22. Analyse the following decays or reactions for possible violation of the basic conversation laws:
 - (a) $\pi^+ + n \rightarrow \wedge^\circ + K^+$.
 - (b) $\pi^+ + n \rightarrow K^o + K^+$
 - (c) $\overline{v}_{\rho} + p \rightarrow n + \mu^{+}$.
 - (d) $\overline{v}_e + p \rightarrow n + e^+$.
 - (e) $\wedge^{\circ}+\rightarrow p+K^{-}$.

 $(4 \times 3 = 12 \text{ weightage})$