(Pages: 2)

Name	••••••
and the	
Reg. No.	

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Chemistry

CH 3C 07—PHYSICAL CHEMISTRY-II

(2010 Admissions)

Three Hours

Maximum: 36 Weightage

Section A

Answer all questions.

Each question carries a weightage of 1.

- 1. 6 particles share a total energy of 6 ϵ . The available quantum states are 0, 1 ϵ , 2 ϵ , 3 ϵ , 4 ϵ , 5 ϵ and 6 ϵ . What are the possible macrostates according to Fermi Dirac statistics assuming the levels to be triply degenerate.
- The ortho para ratio of hydrogen (H₂) is 3:1. Rationalise using statistical thermodynamics.
- 3. Define symmetry number. Find the symmetry number of benzene.
- 4. Rationalise Dulong-Petit's law using statistical thermodynamics.
- 5. Define dilution factor. How is it evaluated?
- 5. What do you mean by communal entropy in liquids?
- 1. State and explain Glansdorf Pregogine equation.
- Explain the term 'local equilibrium'. How does it differ from true equilibrium?
- \blacksquare Decomposition of NO₂Cl takes place according to the following mechanism. Assuming steady state for Cl atom concentration, derive the rate law:

$$NO_2Cl \xrightarrow{k_1} NO_2 + Cl$$

 $NO_2Cl + Cl \rightarrow NO_2 + Cl_2$

- What is pressure jump method in relaxation spectroscopy?
- Distinguish between collision cross-section and reaction cross-section.
- How would you distinguish XPS from AES peaks?
- Distinguish between Arrhenius complex and Vant Hoff complex.
- Unimolecular gas phase reactions catalysed by solids follow first order kinetics at low pressures and zero order kinetics at high pressures. Justify the observation.

 $(14 \times 1 = 14 \text{ weightage})$

Turn over

Section B

Answer any **seven** questions. Each question carries weightage of 2.

- 15. Calculate the residual entropy of ${\rm H_2O}$ assuming a tetrahedral structure with 2 sigma bonds 2 Hydrogen bonds.
- 16. Show that rotations and vibrations of molecules do not contribute towards pressure.
- 17. Derive an equation for the vibrational contribution towards heat capacity of a gas.
- 18. Briefly explain Bose-Einstein condensation.
- 19. Discuss briefly "free volume theory" of liquids.
- 20. Define phenomenological coefficient. Show that direct coefficients always dominate indicoefficients.
- 21. Mechanism of an organic decomposition reaction is given. Derive rate law:

$$\begin{aligned} \mathbf{M}_1 & \xrightarrow{\mathbf{k}_1} & \mathbf{R}_1 + \mathbf{M}_2 \\ \mathbf{R}_1 + \mathbf{M}_1 & \xrightarrow{\mathbf{k}_2} & \mathbf{M}_3 + \mathbf{R}_2 \\ \mathbf{R}_2 & \xrightarrow{\mathbf{k}_3} & \mathbf{R}_1 + \mathbf{M}_4 \\ & & \\ 2\mathbf{R}_2 & \xrightarrow{\mathbf{k}_4} & \mathbf{R}_2 - \mathbf{R}_2 \end{aligned}$$

 $\rm R^{}_1$ and $\rm R^{}_2$ are radicals $\rm M^{}_3$ and $\rm M^{}_4$ are stable products.

- 22. With the help of potential energy surfaces explain the term reaction coordinate.
- 23. Write BET adsorption isotherm in the linear form. Show that it approximates to Langmuir adsor isotherm under limiting conditions.
- 24. Discuss the mechanism of surface catalysed reaction 2CO + $\mathrm{O_2} \rightarrow \mathrm{CO_2}$.

 $(7 \times 2 = 14 \text{ weigh})$

Section C

Answer any **two** questions.

Each question carries a weightage of 4.

- 25. Apply Fermi Dirac statistics for electrons in metals. Discuss.
- 26. Discuss briefly crossed molecular beam experiment.
- 27. Write a brief account of the experimental methods for studying solid surfaces.
- 28. With the help of suitable examples discuss the mechanism of oscillating chemical reactions.

 $(2 \times 4 = 8 \text{ weig})$