D 71335

(Pages: 2)

| Name. | <br> | <br> |  |
|-------|------|------|--|
|       |      |      |  |
|       |      |      |  |

Reg. No.....

# THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

### PHY 3C 09—QUANTUM MECHANICS

bodiem (2012 Admission onwards)

Time: Three Hours on Landage and property and believe

Maximum: 36 Weightage

## Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Give the magnitude of the first order perturbation energy.
- 2. What is the effect of the application of an electric field in the linear stark effect?
- 3. What are turning points? Give its significance.
- 4. What is meant by degeneracy?
- 5. Distinguish between stimulated and spontaneous emission.
- 6. Why does spontaneous emission far exceeds stimulated emission in the visible region?
- 7. What are the arguments used in deriving the Klein-Gordon equation?
- 8. What do you mean by negative energy states?
- 9. Explain what is meant by Pauli Spin matrices.
- 10. What are indistinguishable particles? Give example.
- 11. What is Lamb shift?
- 12. Explain Bohr Sommerfield quantum theory.

 $(12 \times 1 = 12 \text{ weightage})$ 

#### Part B

Answer any **two** questions.

Each question carries 6 weightage.

- 1. Use the variational method to estimate the energies of a one dimensional harmonic oscillator in the ground state and first excited state.
- 2. Prove that the WKB approximation gives correct energy Eigen values of all the states of a harmonic oscillator.
- 3. Outline the Heitler-London theory of the hydrogen molecule and discuss the result.
- 4. Derive the plane wave solutions of Dirac equation. Write the equation for a Central field.

 $(2 \times 6 = 12 \text{ weightage})$ 

Turn over

### Part C

Answer any four questions.

Each question carries 3 weightage.

- 1. A simple harmonic oscillator is perturbed by a harmonic potential so that the result Hamiltonian is given by  $H = \frac{p^2}{2m} + \frac{1}{2} mw^2 x^2 + \lambda x^2$ . Calculate the first order perturbation energy.
- 2. Derive the Bohr-Somerfield quantum condition using WKB method.
- 3. Calculate the Einstein's Coefficients for an electron moving in a central potential.
- 4. State and explain the postulates of Pauli's theory of Spin. Define Pauli matrices.
- 5. IF  $\overline{\alpha} \times \overline{\beta}$  are Dirac matrices prove that :

(a) 
$$\alpha_x = \frac{1}{2} [\alpha_x \alpha_y, \alpha_y]$$
.

(b) 
$$\alpha_x \alpha_y, \alpha_z = \frac{1}{2} [\alpha_x \alpha_y, \alpha_z \beta, \beta].$$

6. Obtain the spin wave functions for two electrons.

 $(4 \times 3 = 12 \text{ weightage})$