171329

| 749711 | ······························ |                     |
|--------|--------------------------------|---------------------|
|        |                                |                     |
| Reg    | . No                           | ******************* |

# THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Mathematics

MT 3C 13-TOPOLOGY II

Three Hours

Maximum: 36 Weightage

#### Part A

Answer all questions.

Each question has weightage 1.

- 1. Prove that if a product is non-empty, then each projection function is onto.
- 2. Let  $C_i$  be a closed subset of a space  $X_i$ , for  $i \in I$ . Prove that  $\prod_{i \in I} C_i$  is a closed subset of  $\prod_{i \in I} X_i$  with respect to the product topology.
- 3. Define a cube and a Hilbert cube.
- 4. Give an example of a topological property which is not productive.
- 5. Prove that if the evaluation map of the family of functions is one-to-one, then that family distinguishes points.
- 6. Give an example of a matric space which is not second countable.
- 7. Let f and  $f^1$  be two paths in a space X such that f is path homotopic to  $f^1$ . Prove that  $f^1$  is path homotopic to f.
- 8. If X is any convex subset of  $\mathbb{R}^n$ , prove that  $\Pi_1(X, x_0)$  is the trivial group.
- 9. Prove that the map  $P: R \to S^1$  given by  $P(x) = (\cos 2\pi n, \sin 2\pi n)$  is a covering map.
- 10. Prove that a continuous function from a compact metric space into another metric space is uniformly continuous.
- II. If a space X is regular and locally compact at a point  $x \in X$ , then prove that x has a local base consisting of compact neighbourhoods.
- 12. Describe the one-point compactification of a topological space X.
- 13. Give an example of a metric which is bounded but not totally bounded.
- 14. Define nowhere dense set in a topological space X. Give an example of a nowhere dense set in the real line with the usual topology.

 $(14 \times 1 = 14 \text{ weightage})$ 

### Part B

## Answer any seven quesions. Each questions has weightage 2.

- 15. Let A be a closed subset for a normal space X and suppose  $f: A \to (-1, 1)$  is continuous. Prove that there exists a continuous function  $F: X \to (-1, 1)$  such that F(x) = f(x) for all  $x \in A$ .
- 16. If the product is non-empty, then prove that each co-ordinate space is embeddable in it.
- 17. Prove that a product of topological spaces is regular if each co-ordinate sapce is regular.
- 18. State and prove the embedding lemma.
- 19. Let X be path connected and  $x_0$  and  $x_1$  be two points of X. Prove that  $\pi_1$  (X,  $x_0$ ) is isomorphic t  $\pi_1$  (X,  $x_1$ ).
- 20. Let A be a strong deformation retract of a space X. Let  $a_0 \in A$  Prove that the inclusion map  $j:(A,a_0)\to (X,a_0)$

induces an isomorphism of fundamental groups.

- 21. Let  $\{X_i : i \in I\}$  be an indexed family of non-empty compact spaces and let x be their topologic product. Prove that X is compact.
- 22. Let X be a Hausdorff space and let Y be a dense subset of X. If Y is locally compact in the relative topology on it, prove that Y is open in X.
- 23. Prove that a metric space is compact if and only if it is complete and totally bounded.
- 24. Prove that equivalence of cauchy sequences is an equivalence relation on the set of all cauch sequences in a metric space (x, d).

 $(7 \times 2 = 14 \text{ weightag})$ 

## Part C

Answer any **two** questions. Each question has weightage 4.

- 25. Prove that metrisability is a countably productive property.
- 26. State and prove Urysohn's metrisation theorem.
- 27. Let  $P: E \to B$  be a covering map, let  $P(e_0) = b_0$ . Prove that any path  $f: [0, 1] \to B$  beginning at has a unique lefting to a path  $\tilde{f}$  in E beginning at  $e_0$ .
- 28. Prove that the one-point compactification of a space is Hausdorff if and only if the space is local compact and Hausdorff.

 $(4 \times 2.= 8 \text{ weightag})$